Меню Рубрики

За каждый правильный ответ 7 очков

Задание №20 ЕГЭ по математике содержит задачу на сообразительность. Задачи в этом разделе более интуитивно понятно, нежели в 19 задании ЕГЭ, но тем не менее достаточно сложны для обычного школьника. Итак, перейдем к рассмотрению типовых вариантов.

В обменном пункте можно совершить одну из двух операций:

  • за 2 золотых монеты получить 3 серебряных и одну медную;
  • за 5 серебряных монет получить 3 золотых и одну медную.

У Николая были только серебряные монеты. После нескольких посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 50 медных. На сколько уменьшилось количество серебряных монет у Николая?

  1. Ввести условные обозначения.
  2. Записать данные задачи с помощью условных обозначений.
  3. Логически рассуждая определить неизвестное.

По условию золотых монет не появилось, значит все полученные после осуществления второй операции золотые монеты, Николай обменял с помощью первой операции. Золотые монеты можно менять только по 2 штуки, следовательно, вторых операций было четное число.

Введем обозначение, пусть вторых операций было 2n(число всегда четное).

Если применить вторую операцию получим:

5 · 2n серебряных обменяли на 3 · 2n золотых + 2n медных.

Все золотые монеты были обменяны в ходе первой операции. За одну операцию можно обменять сразу 2 золотые монеты, значит, всего операций будет совершено (3 · 2n)/2 = 3 n. То есть

3 · 2n золотых обменяли на 3· 3n серебряных + 3n медных.

3 · 2n золотых обменяли на 9n серебряных + 3n медных

Сопоставим результаты первой и второй операции:

5 · 2n серебряных обменяли на 3 · 2n золотых + 2n медных.

3 · 2n золотых обменяли на 9n серебряных + 3n медных

5 · 2n серебряных обменяли на 9n серебряных + 3n медных+2n медных

10 n серебряных обменяли на 9n серебряных + 5n медных

Если, обменяв 10 n серебряных монет, получим 9 n серебряных монет, то количество серебряных монет у Николая уменьшилось на n. Из последнего выражения видно, что Николай получил 5n медных монет, а по условию появилось 50 медных, то есть 5n = 50.

Маша и Медведь съели 100 печений и банку варенья, начав и закончив одновременно. Сначала Маша ела варенье, а Медведь — печенья, но в какой-то момент они поменялись. Медведь и то, и другое ест в три раза быстрее Маши. Сколько печений съел Медведь, если варенья они съели поровну?

  1. Определить, кто и во сколько раз дольше ел печенье.
  2. Определить, кто и во сколько раз дольше ел варенье.
  3. Сопоставить результаты.
  4. Найти неизвестное.
  1. Так как варенье и Маша, и Медведь съели поровну, и при этом Медведь ел варенье в 3 раза быстрее, то Маша ела варенье (свою половину) в 3 раза дольше, чем Медведь (такую же половину).
  2. Тогда получается, что Медведь ел печенья в 3 раза дольше Маши и к тому же ел их в 3 раза быстрее, то есть, на одно съеденное Машей печенье приходилось 3∙3=9 печений, съеденных Медведем.
  3. В сумме эти печенья составляют 1+9=10 и таких сумм в 100 печеньях ровно 100:10 = 10.
  4. Значит, Маша съела 10 печений, а Медведь 9∙10=90.

Маша и Медведь съели 51 печенье и банку варенья, начав и закончив одновременно. Сначала Маша ела варенье, а Медведь — печенья, но в какой-то момент они поменялись. Медведь и то, и другое ест в четыре раза быстрее Маши. Сколько печений съел Медведь, если варенья они съели поровну?

  1. Определить, кто и во сколько раз дольше ел печенье.
  2. Определить, кто и во сколько раз дольше ел варенье.
  3. Сопоставить результаты.
  4. Найти неизвестное.
  1. Так как варенье и Маша, и Медведь, съели поровну, и при этом Медведь ел варенье в 4 раза быстрее, то Маша ела варенье (свою половину) в 4 раза дольше, чем Медведь (такую же половину).
  2. Тогда получается, что Медведь ел печенья в 4 раза дольше Маши и к тому же ел их в 4 раза быстрее, то есть, на одно съеденное Машей печенье приходилось 4∙4=16 печений, съеденных Медведем.
  3. В сумме эти печенья составляют 1+16=17 и таких сумм в 51 печеньях ровно 51:17 = 3.
  4. Значит, Маша съела 3 печенья, а Медведь 3∙16=48.

Если бы каждый из двух сомножителей увеличили на 1, их произведение увеличилось бы на 11. На самом деле каждый из двух сомножителей увеличили на 2. На сколько увеличилось произведение?

  1. Ввести условные обозначения.
  2. Записать первое условие с помощью условных обозначений.
  3. Преобразовать полученное выражение.
  4. Записать с помощью условных обозначений второе условие.
  5. Преобразовать полученное выражение.
  6. Найти неизвестное.

Пусть первый сомножитель равен a, а второй b, их произведение равно ab.

При увеличении этих сомножителей на 1 их произведение возрастает на 11, то есть,

Перенесем произведение ab в левую часть с противоположным знаком и раскроем скобки перемножив.

Теперь аналогично вычислим, на сколько увеличится произведение, если сомножители увеличить на 2 и подставим уже известное нам a + b = 10 :

Если бы каждый из двух сомножителей увеличили на 1, их произведение увеличилось бы на 3. На самом деле каждый из двух сомножителей увеличили на 5. На сколько увеличилось произведение?

  1. Ввести условные обозначения.
  2. Записать первое условие с помощью условных обозначений.
  3. Преобразовать полученное выражение.
  4. Записать с помощью условных обозначений второе условие.
  5. Преобразовать полученное выражение.
  6. Найти неизвестное.

Пусть первый сомножитель равен a, а второй b, их произведение равно ab.

При увеличении этих сомножителей на 1 их произведение возрастает на 3, то есть,

Перенесем произведение ab в левую часть с противоположным знаком и раскроем скобки перемножив.

Теперь аналогично вычислим, на сколько увеличится произведение, если сомножители увеличить на 5 и подставим уже известное нам a + b = 2:

Прямоугольник разбит на четыре меньших прямоугольника двумя прямолинейными отрезками. Периметры трёх из них, начиная с левого верхнего и далее по часовой стрелке, равны 24, 28 и 16. Найдите периметр четвёртого прямоугольника.

Перерисуем прямоугольник в удобном для нас виде:

Теперь составим уравнения с помощью формулы периметра прямоугольника:

Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 10 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 42 очка, если известно, что по крайней мере один раз он ошибся?

  1. Составляем комбинации правильных и неправильных ответов и определяем кол-во баллов в них, например: 1) 1 прав+1 неправ=7–10=–3 балла; 2) 2 прав+1неправ=2·7–10=4 балла и т.д.
  2. Из баллов за прав.ответы и баллов за их комбинации «набираем» 42 балла. Подсчитываем кол-во вопросов, которые при этом были заданы.
  3. Оставшуюся разницу между полученным числом вопросов и данными 25-ю вопросами определяем как те, на которые не было дано ответа.
  4. Делаем проверку полученного результата.

Введем обозначения: прав.ответ – 1П, неправ.ответ – 1Н.

Задаем комбинации и определяем кол-во баллов, которое при этом будет начислено:

Суммируем баллы, которые можно при этом получить: 7+ (–3)+4+11=19. Это явно мало. И гарантированно можно добавить еще 11: 19+11=30. Чтобы «добрать» до 42 баллов, нужно далее добавить 12 баллов, которые набираются тройным вхождением 4-х баллов. В целом получаем:

Распишем полученную комбинацию слагаемых в виде ответов:

16+7=23 ответа. 25–23=2 ответа, за которые было получено по 0 баллов, т.е. это вопросы, оставшиеся без ответов.

Итак, по нашим подсчетам верных ответов было дано 16.

16 ответов по 7 б. + 7 ответов по (–10) б. + 2 ответа по 0 б. = 16·7–7·10+2·0=112–70+0=42 (балла).

В таблице три столбца и несколько строк. В каждую клетку таблицы вписали по натуральному числу так, что сумма всех чисел в первом столбце равна 103, во втором – 97, в третьем – 93, а сумма чисел в каждой строке больше 21, но меньше 24. Сколько всего строк в таблице?

  1. Находим общую сумму для всех чисел в таблице (сложив суммы для каждого из 3-х столбцов).
  2. Определяем диапазон допустимых значений для сумм чисел в каждой строке.
  3. Разделив общую сумму сначала на наименьшую сумму чисел в каждой строке, а затем на наибольшую, получаем искомое кол-во строк.

Общая сумма чисел в таблице равна: 103+97+93=293.

Поскольку по условию суммы чисел в каждой строке составляют >21, но

В доме всего восемнадцать квартир с номерами от 1 до 18. В каждой квартире живет не менее одного и не более трех человек. В квартирах с 1-й по 13-ю включительно живет суммарно 15 человек, а в квартирах с 11-й по 18-ю включительно живет суммарно 20 человек. Сколько всего человек живет в этом доме?

  1. Определяем максимальное кол-во живущих в 11–13-й квартирах, используя данные о том, сколько человек живет в 1–13-й квартирах.
  2. Находим минимальное число жильцов 11–13-й квартир, учитывая данные о живущих в 11–18-й квартирах.
  3. Сопоставляет данные, полученные в пп.1–2, получаем точное кол-во жильцов этих квартир №№11–13.
  4. Находим кол-во живущих в квартирах 1–10-й и 14–18-й.
  5. Вычисляем общее число жильцов дома.

В первых 13 квартирах (с 1-й по 13-ю) живет 15 человек. Это означает, что в 11-ти квартирах живет по 1 человеку плюс в 2-х квартирах по 2 человека (11·1+2·2=15). Следовательно, в 11–13-й (т.е. в 3-х) квартирах проживает не менее 3-х и не более 5 (1+2+2) человек.

Читайте также:  Пьер карден очки для зрения

Во вторых 8 квартирах (11-й по 18-ю) проживает 20 человек. При этом с 14-й по 18-ю квартиры (т.е. в 5 квартирах) не может проживать более чем 5·3=15 человек. А следовательно, в 11-13-й квартирах живет не менее, чем 20–15=5 человек.

Т.е. с одной стороны в 11-13-й квартирах должно жить не более 5 человек, а с другой – не менее 5. Вывод: в этих квартирах живет ровно 5 человек, т.к. других допустимых для обоих случаев значений тут нет.

Тогда получаем: в 1–10-й квартирах живет 15–5=10 человек, в 14–18-й – 20–5=15 человек. Всего в доме проживает: 10+5+15=30 человек.

В обменном пункте можно совершить одну из двух операций:

  • за 4 золотых монеты получить 5 серебряных и одну медную;
  • за 7 серебряных монет получить 5 золотых и одну медную.

У Николая были только серебряные монеты. После нескольких посещений обменного пункта серебряных монет у него стало меньше, золотых не появилось, зато появилось 45 медных. На сколько уменьшилось количество серебряных монет у Николая?

  1. Определяем кол-во серебряных монет, которые необходимы Николаю для совершения двойного обмена так, чтобы у него не появились золотые монеты. Двойной обмен – это обмен сначала серебряных монет на золотые и медные, а затем золотые на серебряные и медные.
  2. Определяем кол-во разных монет, которые появятся у Николая в результате 1 двойного обмена.
  3. Вычисляем кол-во двойных обменов, которые необходимо совершить, чтобы появилось 45 медных монет.
  4. Находим кол-во серебряных монет, которые должен был иметь Николай изначально, чтобы совершить нужное кол-во обменов, и которые получил в результате всех обменов.
  5. Определяем искомую разницу.

Совершить 1-й обмен Николай должен по 2-й схеме, т.к. у него есть только серебряные монеты. Для того же, чтобы в результате у него не оказалось золотых монет, нужно найти минимальное кратное для 5 золотых, которые он получит, и 4 золотых, которые у него за 1 раз могут принять в полном объеме (без остатка). Это – число 20.

Соответственно, чтобы получить 20 золотых монет, у Николая должно быть 20:5=4 комплекта серебряных монет по 7 штук. Значит, первоначально их у него должно быть 4·7=28. И при этом Николай получает еще и 1·4=4 медных монеты.

Совершая обмен, Николай отдает 20:4=5 комплектов золотых медалей. Взамен он получает 5·5=25 серебряных монет и 1·5=5 медных монет.

Т.о., в результате одного обмена у Николая появится 25 серебряных монет и 4+5=9 медных монет. Поскольку в итоге у Николая оказалось 45 медных монет, значит, было совершено 45:9=5 двойных обменов.

Если в результате 1 двойного обмена у Николая оказалось 25 серебряных монет, то после 5 таких обменов у него их окажется 25·5=125 штук. А первоначально он должен был для этого иметь 28·5=140 серебряных монет. Следовательно, их количество у Николая уменьшилось на 140–125=15 штук.

Во всех подъездах дома одинаковое число этажей, и на всех этажах одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нем 357 квартир?

  1. Определяем уравнение для определения кол-ва квартир в доме всего через параметры, заявленные в условии (т.е. через кол-во квартир на этаже и т.д.).
  2. Раскладываем 357 на множители.
  3. Находим соответствие полученных множителей конкретным параметрам, сходя из условия о том, какой из параметров больше или меньше прочих.

Т.к. на всех этажах одинаковое кол-во квартир (Х), по всех подъездах одинаковое кол-во этажей (Y), то обозначив кол-во подъездов через Z, можем записать: 357=X·Y·Z.

Разложим 357 на простые множители. Получим: 357=3·7·17·1. Причем это единственный вариант расклада. Т.к. Y>X>Z>1, то единицу в раскладе не учитываем и определяем, что Z=3, X=7, Y=17.

Поскольку кол-во этажей было обозначено через Y, то искомое число – 17.

Из десяти стран семь подписали договор о дружбе ровно с тремя странами, а каждая из оставшихся трех – ровно с семью. Сколько всего было подписано договоров?

  1. Подсчитываем кол-во договоров, подписанных 7-ю странами.
  2. Определяем кол-во договоров, которые подписали 3 оставшиеся страны.
  3. Находим общее кол-во подписанных договоров. Делим его на 2, т.к. договоры двусторонние.

Первые 7 стран подписали договоры с 3 странами, т.е. на этих договорах поставлено 7·3=21 подпись. Аналогично остальные 3 страны при оформлении договоров с 7-ю странами поставили 3·7=21 подпись. Значит, всего поставлено 21+21=42 подписи.

Т.к. все договоры двусторонние, то это значит, что на каждом из них зафиксировано 2 подписи. Следовательно, договоров вдвое меньше, чем подписей, т.е. 42:2=21 договор.

На поверхности глобуса фломастером проведены 13 параллелей и 25 меридианов. На сколько частей проведенные линии разделили поверхность глобуса?

Меридиан – это дуга окружности, соединяющая Северный и Южный полюсы. Параллель – это окружность, лежащая в плоскости, параллельной плоскости экватора.

  1. Доказываем, что параллели делят глобус на 13+1 часть.
  2. Доказываем, что меридианы делят глобус на 25 частей.
  3. Определяем кол-во частей, на которые в целом разделен глобус, как произведение найденных чисел.

Если всякая параллель – это окружность, то она является замкнутой линией. А это означает, что 1-я параллель делит глобус на 2 части. Далее 2-я параллель обеспечивает деление на 3 части, 3-я – на 4 и т.д. В итоге 13 параллелей разделят глобус на 13+1=14 частей.

Меридиан является дугой окружности, соединяющей полюса, т.е. замкнутой линией она не является и глобус на части не делит. А вот 2 меридиана уже делят, т.е. 2 меридиана обеспечивают деление на 2 части, далее 3-й меридиан добавляет 3-ю часть, 4-й – 5-ю часть и т.д. Значит, в конечном счете, 25 меридианов создает на глобусе 25 частей.

Всего частей на глобусе получается: 14·25=350 частей.

В корзине лежит 30 грибов: рыжики и грузди. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов – хотя бы один груздь. Сколько рыжиков в корзине?

  1. Определяем кол-во груздей среди 12 грибов и рыжиков среди 20 грибов.
  2. Доказываем, что имеется единственно верное число, отображающее кол-во рыжиков. Фиксируем его в ответе.

Если среди 12 грибов есть как минимум 1 рыжик, значит, груздей здесь не более 11. Если среди 20 грибов имеется не менее 1 груздя, то тут не более 19 рыжиков.

Это означает, что если груздей не может быть больше 11, то рыжиков не может быть меньше 30–11=19 штук. Т.е. рыжиков с одной стороны не больше 19, а с другой – не меньше 19. Следовательно, рыжиков может быть только ровно 19.

Если бы каждый из двух множителей увеличили на 1, то их произведение увеличилось бы на 3. На сколько увеличится произведение этих множителей, если каждый из них увеличить на 5?

  1. Вводим обозначения для множителей. Это позволит выразить и первоначальное произведение (до увеличения множителей).
  2. Составляем уравнение для ситуации, когда множители увеличены на 1. Выполняем преобразования. Получаем новое выражение, отображающее связь между первоначальными множителями.
  3. Составляем уравнение для ситуации, когда множители увеличены на 5. Выполняем преобразования. Вводим в уравнение выражение, полученное в п.2, находим искомую разницу.

Пусть 1-й множитель равен х, 2-й – у. Тогда их произведение – ху.

После того, как множители увеличены на 1, получаем:

После увеличения множителей на 5 имеем:

(х+5)(у+5)=ху+N, где N – искомая разница произведений.

Т.к. выше уже определено, что х+у=2, то получим:

Саша пригласил Петю в гости, сказав, что живет в седьмом подъезде в квартире № 462, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом семиэтажный. На каком этаже живет Саша? (На всех этажах число квартир одинакова, нумерация квартир в доме начинается с единицы.)

  1. Способом подбора определяем кол-во квартир на площадке. Это должно быть такое число, чтобы номер квартиры оказался большим, чем кол-во квартир в 6-ти подъездах, однако меньшим, чем кол-во квартир в 7-ми.
  2. Определяем кол-во квартир в 6-ти подъездах. От 462 отнимаем это кол-во и делим на число квартир на площадке. Так узнаем искомый номер этажа. Примечание: 1) если получено целое число, то искомый номер этажа на 1 больше, чем вычисленное значение; 2) если получено дробное число, то номером этажа будет округленный в большую сторону результат.

Ищем кол-во квартир на площадке, проверяя число за числом.

Предположим, что это кол-во равно 3. Тогда получим, что в 7 подъездах на 6 этажах имеется 7·6·3=126 квартир,

а в 7 подъездах на 7 этажах 7·7·3=147 квартир.

Квартира №462 точно не попадает в диапазон квартир №№126–147.

Аналогично проверяя числа 4, 5 и т.д., придем к числу 10. Докажем, что именно оно подходит:

в 7 подъездах на 6 этажах находится 7·6·10=420 квартир,

источник

Хозяин договорился с рабочими, что они копают колодец на следующих условиях: за первый метр он заплатит им 3500 рублей, а за каждый следующий метр – на 1600 рублей больше, чем за предыдущий. Сколько денег хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 9 метров?

Так как оплата каждого следующего метра отличается от оплаты предыдущего на одно и то же число, перед нами арифметическая прогрессия.

Читайте также:  Средство для очищения линз очков

В этой прогрессии — плата за первый метр, — разница в оплате каждого последующего метра, — количество рабочих дней.

Сумма членов арифметической прогрессии находится по формуле:

Подставим данные задачи в эту формулу.

В об­мен­ном пунк­те можно со­вер­шить одну из двух опе­ра­ций:

· за 2 зо­ло­тые мо­не­ты по­лу­чить 3 се­реб­ря­ные и одну мед­ную;

· за 5 се­реб­ря­ных монет по­лу­чить 3 зо­ло­тые и одну мед­ную.

У Ни­ко­лая были толь­ко се­реб­ря­ные мо­не­ты. После не­сколь­ких по­се­ще­ний об­мен­но­го пунк­та се­реб­ря­ных монет у него стало мень­ше, зо­ло­тых не по­яви­лось, зато по­яви­лось 100 мед­ных. На сколь­ко умень­ши­лось ко­ли­че­ство се­реб­ря­ных монет у Ни­ко­лая?

Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, сделав ровно 5 прыжков, начиная прыгать из начала координат?

Если кузнечик сделает пять прыжков в одном направлении (вправо или влево), то он окажется в точках с координатами 5 или -5:

Заметим, что кузнечик может прыгать и вправо и влево. Если он сделает 1 прыжок вправо и 4 прыжка влево (в сумме 5 прыжков), то окажется в точке с координатой -3. Аналогично, если кузнечик сделает 1 прыжок влево и 4 прыжка вправо (в сумме 5 прыжков), то окажется в точке с координатой 3:

Если кузнечик сделает 2 прыжка вправо и 3 прыжка влево (в сумме 5 прыжков), то окажется в точке с координатой -1. Аналогично, если кузнечик сделает 2 прыжка влево и 3 прыжка вправо (в сумме 5 прыжков), то окажется в точке с координатой 1:

Заметим, что если общее количество прыжков нечетное, то в начало координат кузнечик не вернется, то есть он сможет попасть только в точки с нечетными координатами:

Если бы количество прыжков было четным, то кузнечик смог бы вернуться в начало координат и все точки на координатной прямой, в которые он мог бы попасть имели бы четные координаты.

Улитка за день залезает вверх по дереву на 2 м, а за ночь сползает на 1 м. Высота дерева 9 м. За сколько дней улитка доползет до вершины дерева?

Заметим, что в этой задаче следует различать понятие «сутки» и понятие «день».

В задаче спрашивается именно за сколько дней улитка доползет до вершины дерева.

За один день улитка поднимается на 2 м, а за одни сутки улитка поднимается на 1 м (за день поднимается на 2 м, а потом за ночь спускается на 1 м).

За 7 суток улитка поднимается на 7 метров. То есть утром 8-го дня ей останется доползти до вершины 2 м. И за восьмой день она преодолеет это расстояние.

Во всех подъездах дома одинаковое число этажей, а на каждом этаже одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 105 квартир?

Чтобы найти число квартир в доме, нужно число квартир на этаже ( ) умножить на число этажей ( ) и умножить на число подъездов ( ).

То есть нам нужно найти ( ), исходя из следующих условий:

(1)

Последнее неравенство отражает условие «число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного».

То есть ( ) — самое больше число.

Разложим 105 на простые множители:

С учетом условия (1), .

В корзине лежат 30 грибов: рыжики и грузди. Известно, что среди любых 12 грибов имеется хотя бы один рыжик, а среди любых 20 грибов хотя бы один груздь. Сколько рыжиков в корзине?

Так как среди любых 12 грибов имеется хотя бы один рыжик (или больше) число груздей должно быть меньше или равно чем .

Отсюда следует, что число рыжиков больше или равно чем .

Так как среди любых 20 грибов хотя бы один груздь (или больше), число рыжиков должно быть меньше или равно чем

Тогда получили, что с одной стороны, число рыжиков больше или равно чем 19, а с другой — меньше или равно чем 19.

Следовательно, число рыжиков равно 19.

Саша пригласил Петю в гости, сказав, что живёт в седьмом подъезде в квартире № 333, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом девятиэтажный. На каком этаже живёт Саша? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)

Пусть на каждом этаже квартир.

Тогда число квартир в первых шести подъездах равно

Найдем максимальное натуральное значение , удовлетворяющее неравенству ( — номер последней квартиры в шестом подъезде, и он меньше, чем 333.)

Отсюда

Номер последней квартиры в шестом подъезде —

Седьмой подъезд начинается с 325-й квартиры.

, следовательно, 333 квартира находится на втором этаже.

На поверхности глобуса фломастером проведены 17 параллелей и 24 меридиана. На сколько частей проведённые линии разделяют поверхность глобуса? Меридиан – это дуга окружности, соединяющая Северный и Южный полюса. параллель – это окружность, лежащая в плоскости, параллельной плоскости экватора.

Представим себе арбуз, который мы разрезаем на кусочки.

Сделав два разреза от верхней точки к нижней (проведя два меридиана), мы разрежем арбуз на две дольки. Следовательно, проведя 24 разреза (24 меридиана) мы разрежем арбуз на 24 дольки.

Теперь будем разрезать каждую дольку.

Если мы сделаем 1 поперечный разрез (параллель), то разрежем одну дольку на 2 части.

Если мы сделаем 2 поперечных разреза (параллели), то разрежем одну дольку на 3 части.

Значит, сделав 17 разрезов мы разрежем одну дольку на 18 частей.

Итак, мы разрезали 24 дольки на 18 частей, и получили куска.

Следовательно, 17 параллелей и 24 меридиана разделяют поверхность глобуса на 432 части.

На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 5 кусков, если по жёлтым – 7 кусков, а если по зелёным – 11 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?

Если сделать 1 разрез, то получится 2 куска.

Если сделать 2 разреза, то получится 3 куска.

В общем случае: если сделать разрезов, то получится кусок.

Обратно: чтобы получить кусков, нужно сделать разрез.

Найдем общее количество линий, по которым разрезали палку.

Если распилить палку по красным линиям, получится 5 кусков — следовательно, красных линий было 4;

если по жёлтым – 7 кусков — следовательно, желтых линий было 6;

а если по зелёным – 11 кусков — следовательно, зеленых линий было 10.

Отсюда общее количество линий равно . Если распилить палку по всем линиям, то получится 21 кусок.

На кольцевой дороге расположены четыре бензоколонки: A, Б, B, и Г. Расстояние между A и Б – 50 км, между A и В – 40 км, между В и Г – 25 км, между Г и A – 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону). Найдите расстояние между Б и В.

Посмотрим, как могут быть расположены бензоколонки. Попробуем расположить их так:

При таком расположении расстояние между Г и А не может быть равно 35 км.

При таком расположении расстояние между А и В не может быть 40 км.

Этот вариант удовлетворяет условию задачи.

Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 9 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 56 очков, если известно, что по крайней мере один раз он ошибся?

Пусть ученик дал правильных ответов и неправильных ( ). Так как возможно были еще вопросы, на которые он на ответил, получаем неравенство:

Так как правильный ответ добавляет 7 очков, а неправильный убавляет 9, и в конечном итоге ученик набрал 56 очков, получаем уравнение:

Это уравнение надо решить в целых числах.

Так как 9 на 7 не делится, должен делиться на 7.

Пусть , тогда .

В этом случае — все условия выполняются.

Прямоугольник разбит на четыре маленьких прямоугольника двумя прямолинейными разрезами. Площади трех из них, начиная с левого верхнего и далее по часовой стрелке равны 15, 18, 24. Найдите площадь четвертого прямоугольника.

Площадь прямоугольника равна произведению его сторон.

Желтый и голубой прямоугольники имеют общую сторону, поэтому отношение площадей этих прямоугольников равно отношению длин других сторон (не равных между собой).

Белый и зеленый прямоугольники также имеют имеют общую сторону, поэтому отношение их площадей равно отношению других сторон (не равных между собой), то есть тому же отношению:

По свойству пропорции получим

Отсюда .

Прямоугольник разбит на четыре маленьких прямоугольника двумя прямолинейными разрезами. Периметры трех из них, начиная с левого верхнего и далее почасовой стрелке равны 17, 12, 13. Найдите периметр четвертого прямоугольника.

Периметр прямоугольника равен сумме длин всех его сторон.

Читайте также:  Как начисляют очки в варфейс

Обозначим стороны прямоугольников как указано на рисунке и выразим через указанные переменные периметры прямоугольников. Получим:

Теперь нам нужно найти, чему равно значение выражения .

Вычтем из третьего уравнения второе и прибавим третье. Получим:

Упростим правую и левую части, получим:

Итак, .

В таблице три столбца и несколько строк. В каждую клетку таблицы поставили по натуральному числу так, что сумма всех чисел в первом столбце равна 72, во втором – 81, в третьем – 91, а сумма чисел в каждой строке больше 13, но меньше 16. Сколько всего строк в таблице?

Найдем сумму всех чисел в таблице: .

Пусть число строк в таблице равно .

По условию задачи сумма чисел в каждой строке больше 13, но меньше 16.

Так как сумма чисел — натуральное число, этому двойному неравенству удовлетворяют только два натуральных числа: 14 и 15.

Если предположить, что сумма чисел в каждой строке равна 14, то тогда сумма всех чисел в таблице равна , и эта сумма удовлетворяет неравенству .

Если предположить, что сумма чисел в каждой строке равна 15, то тогда сумма всех чисел в таблице равна , и это число удовлетворяет неравенству .

Итак, натуральное число должно удовлетворять системе неравенств:

Единственное натуральное , удовлетворяющее этой системе — это

Про натуральные числа А, В и С известно, что каждое из них больше 4 но меньше 8. Загадали натуральное число, затем его умножили на А потом прибавили к полученному произведению В и вычли С. Получилось 165. Какое число было загадано?

Натуральные числа А, В и С могут быть равны числам 5, 6 или 7.

Пусть неизвестное натуральное число равно .

Получим: ;

Рассмотрим различные варианты.

Пусть А=5. Тогда B=6 и С=7, или B=7 и С=6, или B=7 и С=7, или B=6 и С=6.

Проверим: ; (1)

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Если разность равна , то равенство (1) невозможно. Следовательно, разность равна 0 и

Пусть А=6. Тогда B=5 и С=7, или B=7 и С=5, или B=7 и С=7, или B=5 и С=5.

Проверим: ; (2)

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Если разность равна или 0 то равенство (2) невозможно, так как — четное число, а сумма (165 + четное число) — не может быть четным числом.

Пусть А=7. Тогда B=5 и С=6, или B=6 и С=5, или B=6 и С=6, или B=5 и С=5.

Проверим: ; (3)

Разность между числами В и С либо равна , либо равна 0, если эти числа равны. Число 165 при делении на 7 дает в остатке 4. Следовательно, также не делится на 7, и равенство (3) невозможно.

Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 352, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?

Очевидно, что номер первой страницы после выпавших листов больше чем 352, значит это может быть либо 532, либо 523.

Каждый выпавший лист содержит 2 страницы. Следовательно выпало четное число страниц. 352 — четное число. Если мы к четному числу прибавим четное, то получим четное число. Следовательно, номер последней выпавшей страницы — четное число, и номер первой страницы после выпавших листов должен быть нечетным, то есть 523. Следовательно, номер последней выпавшей страницы 522. Тогда выпало листов.

Маша и Медведь съели 160 печений и банку варенья, начав и закончив одновременно. Сначала Маша ела варенье, а Медведь — печенье, но в какой-то момент они поменялись. Медведь и то, и другое ест в три раза быстрее Маши. Сколько печений съел Медведь, если варенье они съели поровну?

Если Маша и Медведь съели варенье поровну, а медведь в единицу времени съедал втрое больше варенья, значит он ел варенье втрое меньшее время, чем Маша. Другим словами, Маша ела варенье втрое дольше, чем Медведь. Но пока Маша ела варенье, медведь ел печенье. Следовательно, медведь ел печенье втрое дольше, чем Маша. Но Медведь, к тому же, в единицу времени съедал втрое больше печенья, чем Маша, следовательно, в итоге он съел в 9 раз больше печенья, чем Маша.

Теперь несложно составить уравнение. Пусть Маша съела печений, тогда Медведь съел печений. Вместе они съели печений. получаем уравнение:

На прилавке цветочного магазина стоят 3 вазы с розами: оранжевая, белая и синяя. Слева от оранжевой вазы 15 роз, справа от синей вазы 12 роз. Всего в вазах 22 розы. сколько роз в оранжевой вазе?

Так как 15+12=27, и 27>22, следовательно, количество цветов одной вазе посчитали дважды. И это белая ваза, так как это должная быть ваза, которая стоит справа от синей и слева от оранжевой. Значит, вазы стоят в таком порядке:

Вычтя из третьего уравнения первое, получим О= 7.

Десять столбов соединены между собой проводами так, что от каждого столба отходит ровно 8 проводов. сколько всего проводов протянуто между этими десятью столбами?

Смоделируем ситуацию. Пусть у нас есть два столба, и они соединены между собой проводами так, что от каждого столба отходит ровно 1 провод. Тогда получается, что от столбов отходит 2 провода. Но мы имеем такую ситуацию:

То есть при том, что от столбов отходит 2 провода, протянут между столбами всего один провод. Значит, число протянутых проводов в два раза меньше, чем число отходящих.

Получаем: — число отходящих проводов.

— число протянутых проводов.

Из десяти стран семь подписали договор о дружбе ровно с тремя другими странами, а каждая из оставшихся трёх — ровно с семью. Сколько всего было подписано договоров?

Эта задача аналогична предыдущей: две страны подписывают один общий договор. На каждом договоре стоит две подписи. То есть число подписанных договоров вдвое меньше, чем число подписей.

Найдем число подписей:

Найдем число подписанных договоров:

Три луча, выходящие из одной точки, разбивают плоскость на три разных угла, измеряемых целым числом градусов. Наибольший угол в 3 раза больше наименьшего. Сколько значений может принимать величина среднего угла?

Пусть наименьший угол равен , тогда наибольший угол равен . Так как сумма всех углов равна , величина среднего угла равна .

Средний угол должен больше наименьшего и меньше наибольшего угла.

Получим систему неравенств:

Следовательно, принимает значения в диапазоне от 52 до 71 градуса, то есть всего возможных значений.

Миша, Коля и Леша играют в настольный теннис: игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что Миша сыграл 12 партий, а Коля — 25. Сколько партий сыграл Леша?

Следует пояснить, как устроен турнир: турнир состоит из фиксированного числа партий; проигравший в данной партии игрок уступает место игроку, который не участвовал в данной партии. По итогам следующей партии игрок, который не принимал в ней участие, заступает на место проигравшего. Следовательно, каждый игрок принимает участие хотя бы в одной из двух последовательных партий.

Найдем, сколько всего было партий.

Так как Коля сыграл 25 партий, следовательно, в турнире было проведено не меньше 25 партий.

Миша сыграл 12 партий. Так как он точно принимал участие в каждой второй партии, следовательно, было проведено не больше, чем партий. То есть турнир состоял из 25 партий.

Если Миша сыграл 12 партий, то Леша сыграл оставшиеся 13.

В конце четверти Петя выписал подряд все свои отметки по одному из предметов, их оказалось 5, и поставил между некоторыми из них знаки умножения . Произведение получившихся чисел оказалось равным 3495 . Какая отметка выходит у Пети в четверти по этому предмету, если учитель ставит только отметки 2, 3, 4 или 5 и итоговая отметка в четверти является средним арифметическим всех текущих отметок, округленным по правилам округления? (Например, 3,2 округляется до 3; 4,5 — до 5; 2,8 — до 3)

Разложим 3495 на простые множители. Последняя цифра числа 5, следовательно, число делится на 5; сумма цифр делится на 3, следовательно число делится на 3.

Получили, что

Следовательно, оценки Пети 3, 5, 2, 3, 3. Найдем среднее арифметическое:

Среднее арифметическое 6 различных натуральных чисел равно 8. На сколько нужно увеличить наибольшее из этих чисел, чтобы их среднее арифметическое стало на 1 больше?

Среднее арифметическое равно сумме всех чисел, деленной на их количество. Пусть сумма всех чисел равна . По условию задачи , следовательно .

Среднее арифметическое стало на 1 больше, то есть стало равно 9. Если одно из чисел увеличили на , то и сумма увеличилась на и стала равна .

Количество чисел не изменилось и равно 6.

;

источник