Меню Рубрики

Миндалина является высшим подкорковым центром зрения

Миндалина-амигдала (миндалевидное тело) мозга

Миндалина мозга, амигдала или миндалевидное тело (лат. Сorpus amygdoloideum) — это подкорковая структура лимбической системы, расположенная в глубине височной доли мозга.

«Не те» миндалины — глоточные

Не следует путать миндалину, как мозговое образование, с другими миндалинами — глоточными!

Минда́лины рта (лат. tonsillae) — это скопления лимфоидной ткани, расположенные в области носоглотки и ротовой полости. Они выполняют защитную и кроветворную функции, участвуют в выработке иммунитета — являются защитным механизмом первой линии на пути вдыхаемых и глотаемых чужеродных вредных веществ и антигенов. Полная иммунологическая роль миндалин всё еще остаётся неясной. Широко известный термин «гланды» относится только к нёбным миндалинам.

Оба вида миндалин — мозговые и глоточные — действуют совершенно независимо друг от друга и каждая в своей области, а общим для них является только одинаковое название.

И если вам вдруг удалят глоточные миндалины (гланды), то не опасайтесь, что ваша мозговая деятельность будет нарушена тем же манером, что и у несчастных обезьян в опытах, где у них удаляли мозговые миндалины — амигдалы!

«Те самые» миндалины — мозговые

Итак, мозговая миндалина — это скопление серого вещества миндалевидной формы в глубине височной доли мозга, размерами в среднем 10х8х5 мм.

Миндалины-амигдалы относятся к базальным ядрам головного мозга и входят в состав лимбической системы, управляющей эмоциями.

Всего миндалины две — по одной в каждом полушарии. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них.

Функции миндалины

Функции миндалины связаны с обеспечением оборонительного поведения, вегетативными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.

Причём главное, по-видимому, именно мотивация, т.е. побуждение к действию.

Кора головного мозга позволяет создавать сенсорные (чувственные) образы, т.е. видеть, слышать или ощущать что-либо. Гиппокамп (часть лимбической системы, которая «заведует» памятью) даёт возможность сохранить сенсорный образ и вспомнить его спустя какое-то время. А вот миндалевидное тело определяет, какие именно эмоциональные чувства мы испытываем к данному сенсорному образу.

Миндалина — это фактически несколько отдельно функционирующих ядер, которые анатомы объединяют вместе за счёт их близости друг к другу. Среди этих ядер ключевыми являются: базально-латеральный комплекс, центрально медиальные ядра и корково-медиальные ядра.
В базально-латеральный комплекс, необходимый для выработки условного рефлекса опасения у крыс, поступают на вход сигналы от сенсорных систем.
Центрально-медиальные ядра — основной выход для базально-латерального комплекса, и включается в эмоциональном возбуждении у крыс и кошек.
Миндалевидное тело связано с остальными частями нервной системы и расположено очень удачно, поэтому оно действует как центр регуляции эмоций. Оно принимает все сигналы, поступающие из моторной коры, первичной сенсорной коры, из части ассоциативной коры и из теменной и затылочной долей вашего мозга. Другими словами, практически из каждого из имеющихся источников. если ее разрушить, и посмотреть на вегетативные функции, ничего не меняется. Но если ее раздражать, возникает нарушение в работе внутренних органов.
Аксоны, выходящие из амигдалы, сосредоточиваются в ретикулярных ядрах таламуса, которые занимаются обработкой сигналов от органов чувств. Поэтому миндалина может влиять на работу таламуса с сенсорной информацией: придавать какой-то информации повышенную значимость, а другую делать незначимой.

Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Реакция ядра на внешние раздражения длится, как правило, до 85 мс, т. е. значительно меньше, чем реакция на подобные же раздражения новой коры.
Нейроны миндалины имеют хорошо выраженную спонтанную активность, которая может быть усилена или заторможена сенсорными раздражениями. Многие нейроны полимодальны и полисенсорны и активируются синхронно с тета-ритмом.
Если разрушить миндалину, и посмотреть на вегетативные функции, ничего не меняется. Но если ее раздражать, возникает нарушение в работе внутренних органов. Раздражение ядер миндалевидного тела создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению (редко к повышению) кровяного давления, урежению сердечного ритма, нарушению проведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться.
Урежение ритма сокращений сердца при воздействии на миндалины отличается длительным скрытым периодом и имеет длительное последействие.
Раздражение ядер миндалины вызывает угнетение дыхания, иногда кашлевую реакцию.
При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изменения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30—45 с после раздражения). Стимуляция миндалин на фоне активных сокращений желудка или кишечника тормозит эти сокращения.
Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.
Миндалина обеспечивает эмоциональное сопровождение вегетативных реакций. При ориентировочной реакции, когда возникло что-то новое, как правило, такая реакция сопровождается изменением вегетативных функций, как изменение работы сердца, учащение дыхания, изменение кровяного давления. Если разрушить миндалину, то этого эмоционального сопровождения нет, возникает ориентировочная реакция, но не включается вегетативная нервная система, и не изменяются вегетативные реакции. Если разрушить миндалину у самца-доминанту, то его карьере конец. Миндалина отвечает за узнавание человека по лицу. Если возникает скалероз височной области, а миндалина располагается именно там, это особенно часто происходит при эпилепсии, возникает заболевание просопагнозия, Prosop – лицо, agnosia – забывать. В результате этого заболевания человек не узнает даже себя в зеркале.
Миндалина обладает низким судорожным порогом, если возникает травма в области миндалины, очень часто возникает фокус эпилепсии, источник паталогической импульсации. У человека развивается постравмвтическая аминдалярная эпилепсия, которая не связана с глютаматом или ГАМК. В миндалине возникают патологические импульсы, которые идут в кору больших полушарий там возникает повышенная возбудимость от туда в мотонейроны спинного мозга, и происходят тяжелые моторные судороги. Часто это бывает родовой травмой. Повреждение миндалины у животных снижает адекватную подготовку автономной нервной системы к организации и реализации поведенческих реакций, приводит к гиперсексуальности, исчезновению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с поврежденной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас,
бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализующие память об опасности.
У людей и других животных эта подкорковая мозговая структура участвует в формировании как отрицательных (страх), так и положительных эмоций (удовольствие). Её размер положительно коррелирует с агрессивным поведением. У людей это самая сексуально-диморфная структура мозга — у мужчин после кастрации она сжимается более чем на 30 %. Предполагается, что такие состояния, как беспокойство, аутизм, депрессия, посттравматический шок и фобии, связаны с ненормальным функционированием миндалины.

Схема действия миндалины
↙ ↘
При неповреждённой миндалине При повреждённой миндалине
Обезьяна + огонь = страх, бегство Обезьяна + огонь = безразличие

Ограда (Claustrum) представляет собой вытянутой формы пластинку толщиной до 2 мм, передняя часть которой утолщается. Медиальный край пластинки ровный, а по латеральному краю идут небольшие выпячивания серого вещества. Расположена под корой головного мозга, в глубине белого вещества.
Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Эта структура содержит полиморфные нейроны разных типов. Она образует связи преимущественно с корой большого мозга.
Стимуляция ограды вызывает ориентировочную реакцию, поворот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.
Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.

В исследованиях Э.Н. Панаховой (2006) было установлено, что роль амигдалы не ограничивается регуляцией ею перцептивных и когнитивных процессов – она принимает участие в контроле проведения интегральной информации по всему зрительному пути обоих каналов поступления специфических сигналов в зрительную кору большого мозга – ретиногеникулокортикальному и ретиноколликулогеникулокортикальному. По характеру влияния на структуры зрительной системы два филогенетически неоднородных отдела амигдалы находятся в оппонентных взаимоотношениях и оказывают фазическое воздействие противоположной направленности на эти структуры. Установлено, что базолатеральная амигдала (БЛА) приводит к актуализации зрительного сигнала, а более древняя в филогенетическом плане – кортикомедиальная (КМА) – оказывает тормозный эффект на проведение зрительной информации в кору по основному ретиногеникулокортикальному пути.

источник

Вентральная поверхность промежуточного мозга состоит из подбугорья (гипоталамус) — филогенетически старой области, которая является высшим подкорковым центром вегетативной нервной системы и состоит из зрительного перекреста, зрительных трактов, серого бугра с воронкой, гипофизом и сосцевидных тел. Все эти образования лежат непосредственно под зрительными буграми, образуя дно III-го желудочка, полости промежуточного мозга.

В сером веществе гипоталамуса различают три основные гипоталамические области скопления нервных клеток: переднюю, заднюю и промежуточную, которые формируют более 32-х пар ядер, являющиеся высшими подкорковыми центрами регуляции деятельности симпатического и парасимпатического отделов вегетативной нервной системы. Они координируют деятельность всех внутренних органов и желез внутренней секреции, обмена веществ, обеспечивают поддержание гомеостаза. Здесь расположены центры голода, насыщения, жажды, терморегуляции, удовольствия. Как регуляторный орган гипоталамус участвует в чередовании сна и бодрствования, а также в регуляции деятельности гипофиза, имеет связь с лимбической ситемой, участвуя в проявлении эмоций и мотиваций, играя определенную роль в формировании разносторонних поведенческих реакций.

Анатомически и функционально гипоталамус связан с гипофизом и образует с ним единую гипаталамо-гипофизарную систему, в которой первый комплекс играет регулирующую роль, а второй — эффекторную.

Дорсальная поверхность промежуточного мозга состоит из зрительного мозга — филогенетически новой структуры, который подразделяется на зрительные бугры (таламус),забугорную область(метаталамус)инадбугорную область (эпиталамус).

Таламус — самое крупное в мозгу образование яйцевидной формы, лежащее по обе стороны третьего желудочка выше крыши среднего мозга. Оба таламуса соединены тонким пучком нервных волокон — серой комиссурой.

Передний конец таламуса сужен и образует передний бугорок, а задний — расширен и образует подушку таламуса. Зрительный бугор состоитиз большого числа ядер различной величины, отделенных друг от друга тонкими прослойками белого вещества — мозговыми пластинками таламуса. В настоящее время различают до 120 ядер, образующих группы передних, вентролатеральных, медиальных и ретикулярных ядер, выполняющих различные функции

Подушка таламуса обеспечивает переключение от нейронов сетчатки глаза, а в сам таламус является главным коллектором чувствительных путей, по которым к коре полушарий конечного мозга следуют импульсы от экстеро- и интерорецепторов. Таламус принимает участие в поддержании состояния внимания, не пропуская в кору полушарий конечного мозга ненужных в данный момент центростремительных сигналов, также является главным центром восприятия раздражений со стороны экстрапирамидной системы, промежуточным звеном которой он является, при этом обеспечивает сенсомоторные связи, направляя в двигательные зоны коры сигналы из мозжечка и полосатых тел, ответственных за автоматию локомоций.

По функции таламические ядра делятся на специфические, неспецифические и ассоциативные.

В специфических ядрах происходит переключение сенсорной информации с аксонов восходящих афферентных путей на конечные нейроны сенсорных областей коры больших полушарий. Повреждение этих ядер приводит к необратимой утрате определенных видов чувствительности.

Неспецифические ядра таламуса связаны с базальными ядрами и различными участками головного мозга, они поддерживают определенный уровень возбудимости головного мозга, необходимый для восприятия раздражений из окружающей среды.

Ассоциативные ядра участвуют в высоких интеграционных процессах.

Ретикулярное ядро таламуса представляет собой тонкий пласт клеток ограничивающих таламус, через которые проходят все приходящие и выходящие волокна клапанной функции таламуса. Это ядро проецируется во все регионы таламуса, где формируются тормозные разветвления и функционирует как специфичные тормозные цепи, селективно регулируя всю таламо-кортикальную активность.

У человека таламус играет значительную роль в эмоциональном поведении, которое характеризуется своеобразной мимикой, жестами, сдвигами функций внутренних органов. При эмоциональных реакциях повышается артериальное давление, ускоряются частота пульса, дыхания, расширяются зрачки. Поражение таламуса у человека сопровождается сильной головной болью, нарушением сна и чувствительности, координации движения, его точности и др.

Метаталамус состоит из парных образований — коленчатых тел.

Латеральное коленчатое тело в виде удлиненного бугорка, расположено под подушкой таламуса, состоит из чередующихся слоев серого и белого вещества и является переключательным ядром зрительного пути. Отростки клеток этого ядра вместе с волокнами от подушки таламуса образуют зрительную лучистость, которая заканчивается в зрительных центрах коры — шпорной борозде затылочной доли.

Медиальное коленчатое тело имеет форму вытянутого валика, расположенного, между верхними холмиками крыши среднего мозга и подушкой таламуса, являясь переключательным центром слухового пути. Здесь заканчиваются волокна латеральной (боковой) слуховой петли, а волокна идущие от клеток этого ядра заканчиваются в слуховых центрах коры — в верхней височной извилине височной доли.

Эпиталамус расположен под таламусом и к нему относятся мозговые полоски, расширение которых, образуют треугольник поводка, переходящие в мозговую пластинку, соединенных спайкой. Мозговые пластинки, в свою очередь, соединяются с эпифизом (шишковидное тело) — железой внутренней секреции, которая представляет собой редуцированный остаток теменного глаза некоторых древних амфибий и рептилий.

Полостью промежуточного мозга является III желудочек, который представляет собой узкую вертикальную щель между медиальными поверхностями таламусов.

СТРОЕНИЕ И ФУНКЦИЯ МАЛОГО МОЗГА, или МОЗЖЕЧКА. Мозжечок заполняет большую часть задней черепной ямки, весит около 150 г., в поперечном размере равен 10-12 см, в продольном, в области червя — 4 см, а области полушарий — 6 см.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Учение о цитоархитектонике коры полушарий головного мозга соответствует учению И.П. Павлова о коре, как системе корковых концов анализаторов. Анализатор, по Павлову, «есть сложный нервный механизм, начинающийся наружным воспринимающим аппаратом и кончающийся в мозгу» Анализатор состоит из трех частей — наружного воспринимающего аппарата (органа чувств), проводниковой части (проводящие пути головного и спинного мозга) и конечного коркового конца (центра) в коре больших полушарий конечного мозга. По Павлову, корковый конец анализатора состоит из «ядра» и «рассеянных элементов».

Ядро анализатора по структурным и функциональным особенностям подразделяют на центральное поле ядерной зоны и периферическое. В первом формируются тонко дифференцированные ощущения, а во втором — более сложные формы отражения внешнего мира.

Рассеянные элементы представляют собой те нейроны, которые находятся за пределами ядра и осуществляют более простые функции.

Читайте также:  С точки зрения аристотеля политика была

На основании морфологических и экспериментально-физиологических данных в коре головного мозга выделены наиболее важные корковые концы анализаторов (центры), которые путем взаимодействия обеспечивают функции мозга.

Локализация ядер основных анализаторов следующая:

Корковый конец двигательного анализатора (предцентральная извилина, предцентральная долька, задний отдел средней и нижней лобной извилин). Предцентральная извилина и передний отдел околоцентральной дольки входит в состав прецентральной области — двигательной или моторной зоны коры (цитоархитектонические поля 4, 6). В верхнем отделе предцентральной извилине и предцентральной дольке находятся двигательные ядра нижней половины тела, а в нижнем отделе — верхней. Наибольшую площадь всей зоны занимают центры иннервации кисти руки, лица, губ, языка, а меньшую площадь, центры иннервации мышц туловища и нижних конечностей. Раньше считали эту область только двигательной, но в настоящее время ее считают областью, в которой находятся вставочные и двигательные нейроны. Вставочные нейроны воспринимают раздражения от проприорецепторов костей, суставов, мышц и сухожилий. Центры двигательной зоны осуществляют иннервацию противоположной части тела. Нарушения функции предцентральной извилины приводит к параличам на противоположной стороне тела.

Ядро двигательного анализатора сочетанного поворота головы и глаз в противоположную сторону, а также Двигательные ядра письменной речи — графии, имеющие отношение к произвольным движениям, связанными с написанием букв, цифр и других знаков локализуются в заднем отделе средней лобной извилины (поле 8) и на границе теменной и затылочной долей (поле 19). Центр графии тесно связан и с полем 40, расположенным в надкраевой извилины. При повреждении этой области больной не может производить движения, которые необходимы для начертания букв.

Премоторная зона расположена кпереди от моторных участков коры (поля 6 и 8). Отростки клеток этой зоны связаны как с ядрами передних рогов спинного мозга, так и с подкорковыми ядрами, красным ядром, черной субстанцией и др.

Ядро двигательного анализатора артикуляции речи (рече-двигательный анализатор) находятся в заднем отделе нижней лобной извилине (поле 44, 45, 45а). В поле 44 — зона Брока, у правшей — в левом полушарии осуществляется анализ раздражений от двигательного аппарата, посредством которого образуются слоги, слова, фразы. Этот центр образовался рядом с проекционной областью двигательного анализатора для мышц губ, языка, гортани. При поражении его человек способен произносить отдельные речевые звуки, но способность образовать из этих звуков слова он утрачивает (двигательная или моторная афазия). В случае поражения поля 45 наблюдается: аграмматизм — больной утрачивает способность составлять из слов предложения, согласовывать слова в предложения.

Корковый конец двигательного анализатора сложных координированных движений у правшей расположен в нижней теменной дольке (поле 40) в области надкраевой извилине. При поражении поля 40 больной несмотря на отсутствие явлений паралича, теряет способность пользоваться предметами обихода, утрачивает производственные навыки, что называется апраксией.

Корковый конец кожного анализатора общей чувствительности — температурной, болевой, осязательной, мышечно-суставной — располагается в постцентральной извилине (поля 1, 2, 3, 5). Нарушение этого анализатора приводит к потере чувствительности. Последовательность расположения центров и их территория соответствует моторной зоне коры.

Корковый конец слухового анализатора (поле 41) помещается в средней части верхней височной извилине.

Слуховой анализатор устной речи (контроль своей речи и восприятие чужой) находится в задней части верхней височной извилины (поле 42) (зона Вернике_ при его нарушении человек слышит речь, но не понимает ее (сенсорная афазия)

Корковый конец зрительного анализатора (поля 17, 18, 19) занимает края шпорной борозды (поле 17), полная слепота возникает при двустороннем поражении ядер зрительного анализатора. В случаях поражения полей 17 и 18 наблюдается потеря зрительной памяти. При поражении поля 19 человек утрачивает способность к ориентировке в новой для него обстановке.

Зрительный анализатор письменных знаков находится в угловой извилине нижней теменной дольке (поле 39s). При поврежнении этого поля больной утрачивает способность анализа написанных букв, то есть теряет способность читать (алексия)

Корковые концы обонятельного анализатора находятся в крючке парагиппокампальной извилине на нижней поверхности височной доли и гиппокампе.

Корковые концы вкусового анализатора — в нижнем отделе постцентральной извилины.

Корковый конец анализатора стереогностического чувства — центр особо сложного вида узнавания предметов на ощупь находится в верхней теменной дольке (поле 7). При поражении теменной дольки больной не может узнавать предмет, ощупывая его рукой, противоположной очагу поражения — стереогнозия. Различают слуховую гнозию — узнавание предметов по звуку (птицу — по голосу, автомобиль — по шуму моторов), зрительную гнозию — узнавание предметов по виду и т. д. Праксия и гнозия являются функциями высшего порядка, осуществление которых связано как с первой, так и со второй сигнальной системой, что является специфической функцией человека.

Любая функция локализуется не в одном определенном поле, а лишь преимущественно связана с ним и распространяется на большом протяжении.

Речь— является одной из филогенетически новой и наиболее сложно локализованной функцией коры, связанной со второй сигнальной системой, по И.П. Павлову. Речь появилась в ходе социального развития человека, в результате трудовой деятельности. «. Сначала труд, а затем и вместе с ним членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьянами, далеко превосходит его по величине и совершенству» (К. Маркс, Ф. Энгельс)

Функция речи крайне сложна. Она не может быть локализована в каком-либо участке коры, в ее осуществлении участвует вся кора, а именно нейроны с короткими отростками, расположенные в поверхностных ее слоях. С выработкой нового опыта, речевые функции могут перемещаться в другие области коры, как жестикуляция глухонемых, чтение слепых, письмо ногой у безруких. Известно, что у большинства людей — правшей — речевые функции, функции узнавания (гнозия), целенаправленного действия (праксия)связаны с определенными цитоархитектоническими полями левого полушария, у левшей — наоборот.

Ассоциативные зоны коры занимают остальную значительную часть коры, они лишены явной специализации, ответственны за объединение и переработку информации и программированного действия. Ассоциативная кора составляет основу высших процессов, как память, научение, мышление, речь.

Нет зон, рождающих мысли. Для принятия самого незначительного решения участвует весь мозг, вступают в действие разнообразные процессы, происходящие в различных зонах коры и в низших нервных центрах.

Кора головного мозга принимает информацию, обрабатывает ее и хранит в памяти. В процессе приспособления (адаптации) организма к внешней среде в коре сформировались сложные системы саморегуляции, стабилизации, обеспечивающие определенный уровень функции, системы самообучения с кодом памяти, системы управления, работающие на основе генетического кода с учетом возраста и обеспечивающие оптимальный уровень управления и функций в организме, системы сличения, обеспечивающие переход от одной формы управления к другой.

Связи между корковыми концами того или иного анализатора с периферическими отделами (рецепторами) осуществляются системой проводящих путей головного и спинного мозга и отходящих от них периферических нервов (черепно-мозговые и спинномозговые нервы).

Подкорковые ядра. Располагаются в белом веществе основания конечного мозга и образуют три парные скопления серого вещества: полосатое тело, миндалевидное тело и ограда, которые составляют примерно 3% от объема полушарий.

Полосатое тело состоит из двух ядер: хвостатого и чечевицеобразного.

Хвостатое ядро находится в лобной доле и представляет собой образование в виде дуги, лежащей сверху зрительного бугра и чечевицеобразного ядра. Оно состоит из головки, тела и хвоста, которые принимают участие в образовании латеральной части стенки переднего рога бокового желудочка мозга.

Чечевицеобразное ядро крупное пирамидальной формы скопление серого вещества, расположено кнаружи от хвостатого ядра. Чечевицеобразное ядро делится на три части: наружную, темного цвета — скорлупу и двух светлых медиальных полосок — наружного и внутреннего члеников бледного шара.

Друг от друга хвостатое и чечевицеобразное ядра отделены прослойкой белого вещества — частью внутренней капсулы. Другая часть внутренней капсулы отделяет чечевицеобразное ядро от нижележащего таламуса.

Полосатое тело образует стриопаллидарную систему, в которой более древней структурой в филогенетическом отношении является бледный шар — паллидум. Его выделяют в самостоятельную морфо-функциональную единицу, которая выполняет моторную функцию. Благодаря связям с красным ядром и черным веществом среднего мозга, паллидум осуществляет движения туловища и рук при ходьбе — перекрестную координацию, ряд вспомогательных движений при перемене положений тела, мимические движения. Разрушение бледного шара вызывает ригидность мускулатуры.

Хвостатое ядро и скорлупа более молодые структуры полосатого тела — стриатум, который непосредственно моторной функцией не обладает, а выполняет контролирующую функцию по отношению к паллидуму, несколько затормаживая его влияние.

При поражении хвостатого ядра у человека наблюдаются ритмические непроизвольные движения конечностей (хорея Гентингтона), при дегенерации скорлупы — дрожание конечностей (болезнь Паркинсона).

Ограда — сравнительно тонкая полоска серого вещества, расположенная между корой островка, отделяющийся от него белым веществом — внешней капсулой и скорлупой, от которой отделяется наружной капсулой. Ограда является сложным образованием, связи которого до настоящего времени мало изучены, а функциональное значение не ясно.

Миндалевидное тело — крупное ядро, расположенное под скорлупой в глубине переднего отдела височной доли, имеет сложное строение и состоит из нескольких ядер, различающихся по клеточному составу. Миндалевидное тело является подкорковым обонятельным центром и входит в состав лимбической системы.

Подкорковые ядра конечного мозга функционируют в тесной взаимосвязи с корой больших полушарий, промежуточным мозгом и другими отделами мозга, принимают участие в образовании как условных, так и безусловных рефлексов.

Вместе с красным ядром, черным веществом среднего мозга, таламусом промежуточного мозга, подкорковые ядра образуют экстрапирамидную систему, осуществляя сложные безусловно-рефлекторные двигательные акты.

Обонятельный мозг человека является самой древней частью конечного мозга, возникшей в связи с рецепторами обоняния. Он делится на два отдела: периферический и центральный.

К периферическому отделу относятся: обонятельная луковица, обонятельный тракт, обонятельный треугольник и переднее продырявленное вещество.

В состав центрального отдела входят: сводчатая извилина, состоящая из поясной извилины, перешейка и парагиппокампальной извилины, а также гиппокамп — своеобразной формы образование, расположенное в полости нижнего рога бокового желудочка и зубчатая извилина, лежащая внутри гиппокампа.

Лимбическая система (кайма, край) названа так потому, что корковые структуры, входящие в нее, находятся на краю неокортекса и как бы окаймляют ствол мозга. Лимбическая система включает в себя как определенные зоны коры (архипалеокортикальные и межуточные области), так и подкорковые образования.

Из корковых структур это: гиппокамп с зубчатой извилиной (старая кора), поясная извилина (лимбическая кора, являющаяся межуточной), обонятельная кора, перегородка (древняя кора).

Из подкорковых структур: мамиллярное тело гипоталамуса, переднее ядро таламуса, миндалевидный комплекс, а также свод.

Кроме многочисленных двусторонних связей между структурами лимбической системы существуют длинные пути в виде замкнутых кругов, по которым осуществляется циркуляция возбуждения. Большой лимбический круг — круг Пейпеца включает в себя: гиппокамп, свод, мамиллярное тело, сосцевидно-таламический пучок (пучок Вик д’Азира), переднее ядро таламуса, кору поясной извилины, гиппокамп. Из вышележащих структур наиболее тесные связи лимбическая система имеет с лобной корой. Свои нисходящие пути лимбическая система направляет к ретикулярной формации ствола мозга и к гипоталамусу.

Через гипоталамо-гипофизарную систему она осуществляет контроль над гуморальной системой. Для лимбической системы характерна особая чувствительность и особая роль в функционировании гормонов, синтезируемых в гипоталамусе окситоцина и вазопресина, секретируемых гипофизом.

Основной целостной функцией лимбической системы является не только обонятельная функция, но и реакции, так называемого врожденного поведения (пищевые, половые, поисковые и оборонительные). Она осуществляет синтез афферентных раздражений, имеет важное значение в процессах эмоционально-мотивационного поведения, организует и обеспечивает протекание вегетативных, соматических и психических процессов при эмоционально-мотивационной деятельности, осуществляет восприятие и хранение эмоционально значимой информации, выбор и реализацию адаптивных форм эмоционального поведения.

Так, функции гиппокампа связаны с памятью, обучением, формированием новых программ поведения при изменении условий, в формировании эмоциональных состояний. Гиппокамп имеет обширные связи с корой больших полушарий и гипоталамусом промежуточного мозга. У психически больных поражены все слои гиппокампа.

Вместе с тем, каждая структура, входящая в лимбическую систему, вносит свой вклад в единый механизм, имея свои функциональные особенности.

Передняя лимбическая кора обеспечивает эмоциональную выразительность речи.

Поясная извилина принимает участие в реакциях настораживания, пробуждения, эмоциональной активности. Она соединена волокнами с ретикулярной формацией и вегетативной нервной системой.

Миндалевидный комплекс отвечает за пищевое и оборонительное поведение, стимуляция миндалевидного тела вызывает агрессивное поведение.

Перегородка принимает участие в переобучении, снижает агрессивность и страх.

Мамиллярные тела играют большую роль в выработке пространственных навыков.

Кпереди от свода в различных его отделах располагаются центры удовольствия и боли.

Боковые желудочки являются полостями полушарий конечного мозга. Каждый желудочек имеет центральную часть, прилегающую к верхней поверхности зрительного бугра в теменной доле и три, отходящих от нее рога.

Передний рог отходит в лобную долю, задний рог — в затылочную долю, нижний рог — в глубину височной доли. В нижнем роге расположено возвышение внутренней и частично нижней стенки — гиппокамп. Медиальной стенкой каждого переднего рога является тонкая прозрачная пластинка. Правая и левая пластинки образуют между передними рогами общую прозрачную перегородку.

Боковые желудочки, как и все желудочки мозга заполнены церебральной жидкостью. Через межжелудочковые отверстия, которые находятся впереди зрительных бугров, боковые желудочки сообщаются с третьим желудочком промежуточного мозга. Большая часть стенок боковых желудочков образована белым веществом полушарий конечного мозга.

Белое вещество конечного мозга. Образовано волокнами проводящих путей, которые группируются в три системы: ассоциативные или сочетательные, комиссуральные или спаечные и проекционные.

Ассоциативные волокна конечного мозга соединяют различные участки коры в пределах одного полушария. Они делятся на короткие волокна, лежащие поверхностно и дугообразно, соединяющие кору двух соседних извилин и длинные волокна, лежащие глубже и соединяют отдаленные друг от друга участки коры. К ним относятся:

1) Пояс, который прослеживается от переднего продырявленного вещества до извилины гиппокампа и соединяет кору извилин медиальной части поверхности полушария — относится к обонятельному мозгу.

2) Нижний продольный пучок соединяет затылочную долю с височной, проходит вдоль наружной стенки заднего и нижнего рога бокового желудочка.

3) Верхний продольный пучок соединяет лобную, теменную и височную доли.

Читайте также:  Вещества с точки зрения зонной теории

4) Крючковатый пучок соединяет прямую и глазничные извилины лобной доли с височной.

Комиссуральные нервные пути соединяют области коры обеих полушарий. Они образуют следующие комиссуры или спайки:

1) Мозолистое тело самая большая комиссура, которая соединяет различные участки новой коры обоих полушарий. У человека оно значительно больше, чем у животных. В мозолистом теле различают передний изогнутый книзу (клювом) конец — колено мозолистого тела, среднюю часть — ствол мозолистого тела и утолщенный задний конец — валик мозолистого тела. Вся поверхность мозолистого тела покрыта тонким слоем серого вещества — серым облачением.

У женщин в определенном участке мозолистого тела проходит больше волокон, чем у мужчин. Таким образом, межполушарные связи у женщин более многочисленные, в связи с этим у них лучше происходит объединение информации, имеющейся в обоих полушариях, этим и объясняются половые различия в поведении.

2) Передняя мозолистая спайка расположена позади клюва мозолистого тела и состоит из двух пучков; один соединяет переднее продырявленное вещество, а другой — извилины височной доли, преимущественно гиппокампову извилину.

3) Спайка свода соединяет центральные части двух дугообразных пучков нервных волокон, которые образуют расположенный под мозолистом телом свод. В своде различают центральную часть — столбы свода и ножки свода. Столбы свода соединяют треугольной формы пластинку — спайку свода, задний отдел которой сращен с нижней поверхностью мозолистого тела. Столбы свода, изгибаясь кзади, вступают в гипоталамус и заканчиваются в сосковидных телах.

Проекционные пути соединяют кору полушарий головного мозга с ядрами мозгового ствола и спинного мозга. Различают: эфферентные — нисходящие двигательные пути, проводящие нервные импульсы от клеток двигательных областей коры к подкорковым ядрам, двигательным ядрам мозгового ствола и спинного мозга. Благодаря этим путям двигательные центры коры головного мозга проецируются на периферию. Афферентные — восходящие чувствительные пути являются отростками клеток спинномозговых ганглий и ганглий черепно-мозговых нервов — это первые нейроны чувствительных путей, которые оканчиваются на переключательных ядрах спинного или продолговатого мозга, где находятся вторые нейроны чувствительных путей, идущие в составе медиальной петли к вентральным ядрам таламуса. В этих ядрах лежат третьи нейроны чувствительных путей, отростки которых идут в соответствующие ядерные центры коры.

Как чувствительные, так и двигательные пути образуют в веществе больших полушарий систему лучеобразно расходящихся пучков — лучистый венец, собирающийся в компактный и мощный пучок — внутреннюю капсулу, которая располагается между хвостатым и чечевицеобразными ядрами, с одной стороны и таламусом, с другой стороны. В ней различают переднюю ножку, колено и заднюю ножку.

Проводящие пути головного мозга и это спинномозговые пути.

Оболочки головного мозга. Головной мозг также как и спинной мозг покрыт тремя оболочками — твердой, паутинной и сосудистой.

Твердая оболочка головного мозга отличается от таковой спинного мозга тем, что сращена с внутренней поверхностью костей черепа, отсутствует эпидуральное пространство. Твердая оболочка образует каналы для оттока венозной крови от мозга — пазухи твердой оболочки и дает отростки, обеспечивающие фиксацию головного мозга — это серп большого мозга (между правым и левым полушариями мозга), намет мозжечка (между затылочными долями и мозжечком) и диафрагма седла (над турецким седлом, в котором расположен гипофиз). В местах отхождения отростков твердая мозговая оболочка расслаивается, образуя синусы, куда оттекает венозная кровь головного мозга, твердой мозговой оболочки, костей черепа в систему наружных вен через выпускники.

Паутинная оболочка головного мозга расположена под твердой и покрывает мозг, не заходя в его борозды, перекидываясь через них в виде мостиков. На ее поверхности расположены выросты — пахионовы грануляции, имеющие сложные функции. Между паутинной и сосудистой оболочками образуется подпаутинное пространство, хорошо выраженное в цистернах, которые образуются между мозжечком и продолговатым мозгом, между ножками мозга, в области латеральной борозды. Подпаутинное пространство головного мозга сообщается с таковыми спинного мозга и четвертым желудочком и заполнено циркулирующей церебральной жидкостью.

Сосудистая оболочка головного мозга состоит из 2-х пластинок, между которыми располагаются артерии и вены. Она тесно сращена с веществом головного мозга заходит во все щели и борозды и участвует в образовании сосудистых сплетений, богатых кровеносными сосудами. Проникая в желудочки мозга, сосудистая оболочка продуцируют церебральную жидкость, благодаря ее сосудистым сплетениям.

Лимфатические сосуды в оболочках мозга не обнаружены.

Иннервация оболочек мозга осуществляется V, X, XII парами черепно-мозговых нервов и симпатическим нервным сплетением внутренних сонных и позвоночных артерий.

источник

Изучив материал главы, студент должен:

  • • принципы строения ствола головного мозга (отделы, поверхности, этажи);
  • • черепные нервы ствола головного мозга, их ядра и места выхода из мозга;
  • • основные афферентные и эфферентные тракты; сегментарный аппарат ствола головного мозга;
  • • внешнее и внутреннее строение мозжечка (поверхности, основные дольки червя и полушарий, ножки мозжечка и их состав, строение коры и ядра мозжечка);
  • • классификацию структур промежуточного мозга и их функциональное предназначение; части таламического мозга и гипоталамуса; стенки третьего желудочка; ядра таламуса, гипоталамуса; строение гипофиза и его функции;
  • • классификацию структур конечного мозга; названия борозд и извилин полушарий большого мозга; динамическую локализацию функций в коре головного мозга и ее слои; топографию и функциональное предназначение базальных ядер; классификацию и функциональное предназначение волокон белого вещества плаща;
  • • механизм образования и всасывания спинномозговой жидкости; локализацию, стенки и сообщения желудочков головного мозга и их сообщения с субарахноидальным пространством; оболочки и межоболочечные пространства головного и спинного мозга;
  • • различать отделы и поверхности ствола головного мозга; демонстрировать борозды и места выхода черепных нервов; изображать схемы поперечного сечения продолговатого мозга, моста и среднего мозга;
  • • демонстрировать поверхности мозжечка, полушария и червя, ножки мозжечка;
  • • демонстрировать части таламического мозга и гипоталамуса; зрительный нерв и зрительный перекрест; изображать схему расположения и связи ядер таламуса и гипоталамуса;
  • • демонстрировать границы долей большого мозга; основные борозды и извилины коры полушарий; структуры белого вещества (мозолистое тело и его части; внутреннюю и наружную капсулы; свод мозга);
  • • демонстрировать IV, III и боковые желудочки, а также их сообщения; оболочки и межоболочечные пространства головного и спинного мозга; отростки твердой облочки головного мозга;
  • • навыками прогнозирования функциональных нарушений определенных отделов и этажей ствола головного мозга;
  • • навыками прогнозирования функциональных нарушений различных структур мозжечка, изображать схемы проводящих путей мозжечка;
  • • навыками прогнозирования функциональных нарушений различных структур промежуточного мозга;
  • • навыками прогнозирования функциональных нарушений различных структур конечного мозга (прежде всего – проекционных и ассоциативных центров) и их клинических проявлений;
  • • навыками выбора анатомических препаратов для демонстрации желудочков и оболочек головного мозга.

Головной мозг является высшим отделом центральной нервной системы. В нем выделяют ствол головного мозга, мозжечок и большой мозг. На ранних стадиях развития (третья неделя внутриутробного развития) головной мозг представлен ромбовидным, средним и передним мозговыми пузырями (табл. 3.1). В дальнейшем из ромбовидного мозга развиваются продолговатый и задний мозг (рис. 3.1). Задний мозг включает в себя мост, мозжечок и перешеек ромбовидного мозга. Перешеек ромбовидного мозга образуют верхние мозжечковые ножки, верхний мозговой парус и треугольник петель. Из переднего мозга дифференцируются конечный и промежуточный мозг (пятая неделя внутриутробного развития). Средний мозговой пузырь на отделы не дифференцируется – из него в дальнейшем формируется средний мозг.

Наиболее сложные превращения в процессе развития претерпевает передний мозговой пузырь. В задней части промежуточного мозга наибольшего развития достигают латеральные стенки, которые значительно утолщаются и образуют таламусы (зрительные бугры). Из боковых стенок промежуточного мозга путем выпячивания в латеральные стороны образуются глазные пузырьки, каждый из которых впоследствии превращается в сетчатку глазного яблока и зрительный нерв. В дорсальной стенке промежуточного мозга появляется слепой непарный вырост, который впоследствии превращается в шишковидное тело, или эпифиз. В области вентральной стенки образуется еще одно непарное выпячивание, превращающееся в дальнейшем в гипофиз.

Полость конечного мозга на ранних этапах развития представляет собой непарный мозговой пузырь. В дальнейшем происходит значительное развитие боковых отделов и непарный мозговой пузырь превращается в два выпячивания – будущие полушария конечного мозга. Неравномерный рост стенок пузырей полушарий приводит к тому, что вначале на гладкой их наружной поверхности в определенных местах появляются углубления – зачатки основных борозд полушарий большого мозга. При помощи таких борозд каждое полушарие оказывается разделенным на доли, которые в дальнейшем более мелкими бороздами подразделяются на выпячивания – извилины. К моменту рождения ребенка полушария конечного мозга имеют все первичные и вторичные борозды и извилины.

Классификация отделов головного мозга

Стадия трех мозговых пузырей

Стадия пяти мозговых пузырей

  • 1) мост;
  • 2) мозжечок;
  • 3) перешеек ромбовидного мозга
  • 1) пластинка крыши;
  • 2) ножки мозга
  • 1) таламический мозг;
  • 2) гипоталамус
  • 1) полушария большого мозга (плащ);
  • 2) базальные ядра;
  • 3) обонятельный мозг

Рис. 3.1. Развитие головного мозга:

I – ромбовидный мозг; II – средний мозг; III – передний мозг; 1 – спинной мозг; 2 – продолговатый мозг; 3 – задний мозг; 4 – перешеек ромбовидного мозга; 5 – средний мозг; 6 – промежуточный мозг; 7 – конечный мозг

Ствол головного мозга – это филогенетически древняя его часть, в которой располагаются структуры, относящиеся к сегментарному аппарату головного мозга, а также подкорковые центры слуха, зрения, обоняния и тактильной чувствительности. Ствол головного мозга образуют продолговатый мозг, мост и средний мозг. С ними анатомически и функционально связаны 10 пар черепных нервов (с III по XII). II пара черепных нервов – зрительный нерв – связана с промежуточным мозгом, I пара черепных нервов – обонятельные нервы – с конечным. Пространственное расположение отделов головного мозга представлено на рис. 3.2.

Структуры внутри вещества ствола головного мозга условно можно разделить на три зоны.

• I – основание ствола мозга – соответствует вентральной поверхности. В нем проходят нисходящие (эфферентные) пирамидные тракты, начинающиеся от коры полушарий большого мозга, – корково-спинномозговой и корково-ядерный тракты. Они отвечают за выполнение точных, заранее продуманных, предуготованных, осознанных движений и оказывают тормозное воздействие на сегментарный аппарат.

Рис. 3.2. Сагиттальный разрез головного мозга:

  • 1 – спинной мозг; 2 – олива; 3 – мост; 4 – ножка мозга; 5 – глазодвигательный нерв; 6 – сосцевидное тело; 7 – гипофиз; 8 – зрительный перекрест; 9 – свод; 10 – лобная доля; 11 – прозрачная перегородка; 12 – борозда мозолистого тела; 13 – мозолистое тело; 14 – сосудистое сплетение третьего желудочка; 15 – межталамическое сращение; 16 – таламус; 17 – шишковидное углубление; 18 – теменнозатылочная борозда; 19 – затылочная доля; 20 – шпорная борозда; 21 – шишковидное тело; 22 – мозжечок; 23 – пластинка крыши; 24 – четвертый желудочек
  • • II – покрышка ствола – соответствует средней зоне. В ней проходят афферентные (восходящие) тракты и эфферентные экстрапирамидные тракты, начинающиеся от подкорковых двигательных центров. Кроме того, в покрышке располагаются клетки и ядра ретикулярной формации, ядра черепных нервов и подкорковые двигательные центры экстрапирамидной системы, которые безусловнорефлекторно регулируют тонус мышц и обеспечивают непроизвольные движения.
  • • III – крыша ствола головного мозга расположена дорсальнее полости нервной трубки. Она представлена подкорковым интеграционным центром среднего мозга – пластинкой крыши. Интеграционный центр среднего мозга обеспечивает безусловнорефлекторные движения на сильные и неожиданные раздражения. Мозжечок является интеграционным центром ромбовидного мозга. Он обеспечивает координацию движений.

Промежуточный мозг, развившийся из заднего отдела переднего мозгового пузыря, функционально и морфологически связан с органом зрения. В нем формируются коммуникационные центры всех видов чувствительности и интеграционный центр вегетативных функций. Конечный мозг, также развившийся из переднего мозгового пузыря, составляет новый мозг. Это филогенетически новейшее образование, в котором находятся высшие интеграционные центры. Они осуществляют сознательный анализ поступившей информации и ответные произвольные движения.

Следует обратить внимание, что от спинного мозга и чувствительных ядер черепных нервов к подкорковым интеграционным центрам (мозжечок, средний мозг и промежуточный мозг) идут бессознательные афферентные тракты, а к интеграционным центрам коры полушарий большого мозга – сознательные афферентные тракты. От подкорковых интеграционных центров к двигательным ядрам черепных нервов и к двигательным ядрам передних рогов спинного мозга направляются экстрапирамидные эфферентные тракты (обеспечивают бессознательные движения), а от коры полушарий большого мозга – пирамидные эфферентные тракты. Они обеспечивают осознанные (произвольные) движения.

источник

10 дней у высших позвоночных и 6-9 недель у низших позвоночных .

Классы клеток

Реакция нервных клеток при освещении фоторецепторов, находящихся

в центральной части РП

в периферической части РП

Биполярные клетки ON типа Деполяризация Гиперполяризация Биполярные клетки OFF типа Гиперполяризация Деполяризация Ганглионарные клетки ON типа Деполяризация и увеличение частоты ПД Гиперполяризация и снижение частоты ПД Ганглионарные клетки OFF типа Гиперполяризация и снижение частоты ПД Деполяризация и увеличение частоты ПД Ганглионарные клетки ON OFF типа

Дают короткий ON -ответ на стационарный световой стимул и короткую OFF -реакцию на ослабление света.

Существует два основных типа ганглионарных клеток: с ON-центром и OFF-центром. Клетка с ON-центром возбуждается при освещении центра и тормозится при освещении периферии её рецептивного поля. Реакция на свет клетки с off-центром диаметрально противоположная. Кроме того, у млекопитающих имеются клетки промежуточного (ON-OFF) типа, которым свойственна кратковременная реакция на освещение по on-типу и на затенение по off-типу.

Рецептивные поля биполярных и ганглионарных клеток имеют круглую форму. В рецептивном поле можно выделить центральную и периферическую часть (центральная всегда противоположна периферической, если центр ON, то периферия, соответственно, OFF). Граница между центральной и периферической часть рецептивного поля является динамичной и может смещаться при изменении уровня освещенности . Перекрытие рецептивных полей различных ганглионарных клеток позволяет повышать световую чувствительность при низком пространственном разрешении .

Источник: http://old.www.bio.bsu.by/phha/19/19_text.html 1 — ганглионарная клетка, 2 и 3 — центральная и периферическая часть ее рецептивного поля (показано схематично), 4 – пучок света, 5 – отметка времени действия светового стимула, 6 — импульсная электрическая активность ганглионарной клетки Ганглионарные клетки постоянно передают сигналы в головной в мозг. В общей сложности паттерны сигналов можно разделить так: паттерн от клетки в покое, паттерн от освещения периферии рецептивного поля и паттерн от освещения центра рецептивного поля. У OFF и ON ганглионарных клеток реакция на свет, а соответственно и паттерны будут диаметрально противоположными . Паттерны синаптических контактов в зрительной системе необыкновенно точны. Эти связи обуславливают свойства рецептивного поля индивидуальных зрительных нейронов и в конечном счете детерминируют качество визуального восприятия . Анализируя различия между паттернами, зрительная кора и «создает» зрительный образ. Фоторецепторы, биполярные и ганлионарные клетки. Источник: http://old.what-when-how.com/neuroscience/visual-system-sensory-system-part-2/ A. Изменение в электрической активности фоторецепторов, биполярных, ганглионарных клеток с ON-центром и OFF-центром, когда центр рецептивного поля колбочки в темноте. B. Изменение в электрической активности фоторецепторов, биполярных, ганглионарных клеток с ON-центром и OFF-центром, когда центр рецептивного поля колбочки на свету. Рецептивное поле ганглионарной клетки с ON-центром, OFF-периферией. Центр рецептивного поля освещен, периферия в тени. Источник: http://old.droualb.faculty.mjc.edu/Course%20Materials/Physiology%20101/Chapter%20Notes/Fall%202007/chapter_10%20Fall%202007.htm

Читайте также:  Вижу первую строчку таблицы для зрения

источник

Располагается в позвоночном канале и имеет сегментарное строение. Представляет собой тяж, сплющенный по бокам. В центре спинного мозга расположено серое вещество – скопление тел и дендритов нейронов, окруженное белым веществом, образованным нервными волокнами. В центре серого вещества находится полость, которая называется спинномозговым каналом. Она заполнена спинномозговой жидкостью – ликвором.

Спинной мозг выполняет рефлекторную и проводниковую функции. К рефлекторным функциям, которые выполняются при участии серого вещества, относят

1. сгибательные (разгибательные) рефлексы — заключаются в возникновении реципрокного торможения мышц-разгибателей (сгибателей) при сокращении мышц-сгибателей (разгибателей), например, прыжок, бег;

2. сухожильные рефлексы (например, коленный, ахиллов);

3. миотатический рефлекс (рефлекс растяжения) – заключаются в сокращении мышц-разгибателей, возникающем вследствие раздражения мышечных рецепторов при длительном растяжении (например, рефлекс стояния по стойке «смирно»);

4. ритмические рефлексы (например, рефлексы шагания, чесания);

5. тонические рефлексы – рефлексы поддержания позы;

6. вегетативные (сосудодвигательный, потоотделительный, регуляции функций сердца и бронхов, мочеиспускания, дефекации, деятельности половых органов).

В осуществлении проводниковой функции участвует белое вещество спинного мозга. Нервные волокна спинного мозга образуют проводящие пути: нисходящие – несущие информацию от головного мозга на периферию, и восходящие – несущие информацию идущую от рецепторов к головному мозгу.

Головной мозг человека анатомически делят на пять отделов:

· Задний мозг, образованный варолиевым мостом и мозжечком;

· Промежуточный мозг, образованный таламусом, гипоталамусом, эпиталамусом и метаталамусом;

· Конечный мозг, состоящий из больших полушарий, покрытых корой, и базальных ганглиев.

Продолговатый мозг, варолиев мост и средний мозг являются стволовыми структурами головного мозга.

Все отделы головного мозга пронизывает полость, которая образует в продолговатом и заднем мозге IV желудочек, в среднем мозге – сильвиев водопровод, в промежуточном мозге – III желудочек, в больших полушариях I и II боковые желудочки. Снаружи головной мозг покрыт тремя оболочками: твердой, паутинной и мягкой, в которых проходят кровеносные сосуды.

Продолговатый мозг является прямым продолжением спинного мозга и в своей нижней части сходен с ним по строению, в ней частично сохраняется сегментарное строение. От спинного мозга он отличается тем, что не имеет строгого разделения на серое и белое вещество. Серое вещество в продолговатом мозге располагается в толще белого в виде скоплений – ядер.

Ядра продолговатого мозга – это ядра следующих черепно-мозговых нервов (ЧМН): языкоглоточного (IX), блуждающего (X), добавочного (XI) и подъязычного (XII).

Созревание выше перечисленных ядер заканчивается к 7 годам.

В продолговатом мозге располагаются следующие жизненноважные центры:

Кроме этого продолговатый мозг принимает участие в осуществлении статических и статокинетических рефлексов. Статические рефлексы (рефлексы положения и выпрямления) обеспечивают сохранение определенной позы человека, а статокинетические (рефлексы прямолинейного и углового ускорения) – его перемещение в пространстве.

Проводниковая функция продолговатого мозга заключается в проведении нервных импульсов от центров спинного мозга до центров коры больших полушарий (афферентные связи) и обратно (эфферентные связи).

Располагается впереди продолговатого мозга. Его функции связаны с ядрами ЧМН: преддверно-улиткового (VIII), лицевого (VII), отводящего (VI) и тройничного (V).

Мост вместе с продолговатым мозгом, как единое функциональное образование, принимает участие в регуляции различных сложных двигательных актов, таких, как сосательный рефлекс, жевание, глотание, кашель, чихание, а также в регуляции мышечного тонуса и равновесии тела.

Проводниковая функция моста: осуществление связи коры больших полушарий с мозжечком и спинным мозгом.

Мозжечок расположен над продолговатым мозгом и мостом. Состоит из белого и серого вещества. Извилины мозжечка представляют собой пластинки белого вещества, покрытые серым веществом – корой.

Мозжечок обладает обширными афферентными и эфферентными связями и выполняет следующие функции:

· регуляция позы и мышечного тонуса;

· коррекция медленных целенаправленных движений и их координация с рефлексиями поддержания позы;

· правильное выполнение быстрых целенаправленных движений по командам коры больших полушарий в структуре общей программы движений;

· участвует в выполнении висцеральных функций.

Признаки поражения мозжечка:

· астения – заключается в снижении силы мышечных сокращений, появлении утомляемости;

· астазия – утрата способности мышц к длительному тетаническому сокращению, вследствие чего конечности и голова непрерывно дрожат и качаются;

· атаксия – нарушение точности движений;

· дисметрия – несоответствие между интенсивностью мышечного сокращения и задачей выполняемого движения;

· дистония – нарушение тонуса мышц в сторону повышения или понижения его.

Усиленный рост мозжечка отмечается на первом году жизни ребенка. В дальнейшем темпы роста снижаются. К 15 годам мозжечок достигает размеров взрослого.

Средний мозг располагается между мостом и промежуточным мозгом. Представлен ножками мозга и четверохолмием (состоит их нижних и верхних холмиков). В среднем мозге расположены черная субстанция, красное ядро, ядра черепно-мозговых нервов (глазодвигательного – III пара, блокового – IV пара). Черная субстанция участвует в сложной координации движений пальцев рук, актов глотания и жевания. Красное ядро имеет непосредственное отношение к регуляции мышечного тонуса. В четверохолмиях среднего мозга располагаются первичные центры слуха и зрения. Ядра этого образования обеспечивают возникновение «сторожевого рефлекса» в ответ на зрительные и слуховые раздражения, выпрямительного и статокинетических рефлексов.

Ретикулярная формация – это диффузная сеть, состоящая из скоплений интернейронов и их нервных волокон. Она начинается на уровне продолговатого мозга и распространяется до уровня среднего и промежуточного мозга сверху и спускается до центральных отделов спинного мозга.

Ретикулярная формация ствола мозга, прежде всего, выполняет функцию фильтра, который позволяет важным для организма сенсорным сигналам активизировать кору мозга, но не пропускает привычные для него или повторяющиеся сигналы. Она участвует в регуляции уровня возбудимости и поддержании тонуса всех отделов ЦНС, в том числе коры больших полушарий. Активность самой ретикулярной формации поддерживают импульсы, приходящие от восходящих сенсорных путей. В свою очередь, кора больших полушарий оказывает нисходящие тормозящие влияния на ретикулярную формацию ствола. Ретикулярная формация получает также нисходящие влияния от мозжечка, подкорковых ядер, лимбической системы. Ретикулярные нейроны участвуют в регуляции работы сердечно-сосудистой системы (поддержание кровяного давления) и регуляции дыхания. Ретикулярная формация играет важную роль в сознании, мышлении, памяти, восприятии, эмоциях, сне, бодрствовании, вегетативных функциях, целенаправленных движениях, а также в механизмах формирования целостных реакций организма.

Промежуточный мозг расположен выше среднего мозга, под мозолистым телом. Сверху он полностью покрыт большими полушариями. Промежуточный мозг состоит из таламуса, гипоталамуса, эпиталамуса и метаталамуса.

1. Таламус образован главным образом серым веществом. Он связан с лимбической системой, ретикулярной формацией, гипоталамусом, мозжечком, базальными ганглиями и корой. Таламус является подкорковым центром всех видов чувствительности (вкусовой, тактильной, температурной, болевой), подкорковым центром слуховых и зрительных ощущений, а также принимает участие в высших интегративных процессах головного мозга.

2. Гипоталамус включает в себя зрительный перекрест, зрительные тракты, серый бугор, воронку, сосцевидные тела и подбугорье. Гипоталамус связан с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, гипофизом. Сосцевидные тела содержат в себе подкорковые центры обонятельного анализатора. Серый бугор принимает участие в регуляции функций многих эндокринных желез и обмена веществ. В нем залегают ядра вегетативной нервной системы, которые оказывают влияние на эмоции человека (страх, ярость, гнев). Гипоталамус состоит из двух видов клеток: нейронов обычного типа и нейросекреторных клеток. Нейросекреторные клетки синтезируют нейрогормоны (вазопрессин и окситоцин), которые участвуют в регуляции вегетативных функций организма. Нейроны гипоталамуса воспринимают все изменения, происходящие в крови и ликворе (температуру, состав, содержание гормонов). Гипоталамус содержит в себе центры жажды, голода, насыщения, терморегуляции, регуляции водного и углеводного обменов, полового поведения, оборонительных и пищевых реакций. Развитие ядер гипоталамуса заканчивается в период полового созревания.

3. Эпиталамус включает эпифиз, являющийся железой внутренней секреции. Его гормоны влияют на развитие половых желез (тормозят их деятельность), и регуляцию биоритмов.

4. Метаталамус образован латеральными и медиальными коленчатыми телами. Медиальные коленчатые тела вместе с нижними холмиками среднего мозга являются подкорковыми центрами слухового анализатора, а латеральные тела вместе с верхними холмиками четверохолмия – подкорковыми центрами зрительного анализатора.

Конечный, или передний, мозг включает в себя базальные ганглии и большие полушария.

Подкорковые, или базальные, ядра ( ганглии ) погружены в белое вещество больших полушарий. Они связаны с корой и с таламусом. К ним относятся бледный шар, скорлупа, хвостатое ядро и миндалина. Первые три являются высшими подкорковыми центрами координаций движений. С их помощью осуществляется регуляция ориентировочных и оборонительных рефлексов. Миндалина относится к вегетативным центрам лимбической системы.

Большие полушария состоят из белого и серого вещества. Периферическая часть полушарий покрыта корой (серым веществом). Кора больших полушарий представляет собой слой серого вещества, образованный скоплениями нейронов. Эти скопления располагаются слоями и колонками. Слоев, образующих кору шесть. Каждый слой имеет определенный клеточный состав. Колонки располагаются в основном в третьем слое коры.

Поверхность коры складчатая. Борозды и извилины увеличивают площадь поверхности коры.

Каждое полушарие состоит из пяти долей: лобной, теменной, височной, затылочной и островковой. К каждой из долей подходят нервные волокна от нижележащих отделов мозга, определенных ядер таламуса или базальных ганглиев.

Деление полушария на доли осуществляется бороздами. Центральная борозда (роландова) отделяет лобную долю от теменной, латеральная (сильвиева) – височную от лобной и теменной, теменно-затылочная разделяет теменную долю и затылочную. В глубине латеральной борозды располагается островковая доля. В лобной доле перед центральной бороздой располагается предцентральная борозда, которая отделяет предцентральную извилину. В теменной доле постцентральная борозда отделяет постцентральную извилину. В затылочной доле наиболее постоянной является поперечная извилина. В височной доле две борозды – верхняя и нижняя височные – отделяют одну от другой верхнюю, среднюю и нижнюю височные извилины.

Особенностью функциональной организации коры является то, что сигналы от рецепторов проецируются не на один нейрон, а на группу связанных между собой нейронов. В результате сигнал фокусируется не только в одной точке, но и распространяется на некоторое расстояние и захватывает соседние нейронные комплексы. Это обеспечивает анализ сигнала и возможность его передачи в другие структуры мозга.

1. сенсорную – в коре находятся высшие отделы всех сенсорных систем;

2. ассоциативную — эта функция связана с лобными долями, большей частью теменной и височной;

3. двигательную – двигательная область коры контролирует активность мотонейронов, и, следовательно, произвольные движения.

Из первичных сенсорных зон (проекционных зон) импульсы распространяются к ассоциативным и моторным областям.

К сенсорным зонам относят зоны, которые получают специфическую сенсорную информацию: зрительную (затылочная доля), слуховую и вестибулярную (височная доля), соматосенсорную и вкусовую (теменная доля).

Соматосенсорная зона коры– область мышечной и кожной чувствительности – располагается в постцентральной извилине. К этой зоне приходят сигналы от скелетных мышц, сухожилий и суставов, а также сигналы от тактильных, температурных и болевых рецепторов кожи.

Сенсорная зрительная зона располагается в шпорной борозде (затылочная доля).

Сенсорная слуховая зона располагается в височной доле.

Сенсорная зона вестибулярного аппарата располагается в височной доле.

Зона вкусовых ощущений располагается в теменной доле, в нижней части постцентральной извилины.

Зона обонятельной чувствительности располагается в старой коре – гиппокампальной извилине и амоновом роге.

Моторные зоны коры расположены в предцентральной извилине лобной доли и связаны с ядрами ствола мозга и мотонейронами спинного мозга.

Сенсорные и моторные зоны коры осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляют первую сигнальную систему действительности.

Ассоциативные зоны получают импульсы от всех зон коры. Здесь происходит интеграция информации, полученной от нескольких сенсорных систем. К ассоциативной относится лимбическая кора. К ней относятся поясная и паракампальная извилины, находящиеся в области конечного мозга, окаймляющей ствол мозга. Лимбическая система мозга интегрирует три вида информации:

— работе внутренних органов;

— от чувствительных, двигательных и ассоциативных зон коры;

— от обонятельных рецепторов.

К функциям лимбической системы относят

1. формирование эмоционального поведения (эмоций и мотиваций);

2. обеспечение поддержания гомеостаза;

3. регуляция цикла «сон-борствование»;

4. участие в процессах обучения и памяти.

Ассоциативные зоны коры связаны с наиболее сложными процессами, свойственными жизни и деятельности человека. Здесь располагаются центры второй сигнальной системы, с которыми связана членораздельная речь. Функция речи относится к специфическим особенностям человека, являясь основой абстрактного мышления. Центрами второй сигнальной системы являются

1. Центр Брока – двигательный центр речи (произношение слов и предложений) – расположен в нижней лобной извилине. Поражение этого центра ведет к двигательной афазии – утрате способности произносить слова.

2. Центр Вернике – акустический центр устной речи – расположен в верхней височной извилине. При поражении этого центра возникает речевая агнозия – неспособность понимать речь.

3. Центр письменной речи расположен в заднем участке средней лобной извилины. Поражение этого центра приводит к аграфии — утрате способности писать буквы и другие письменные знаки.

4. Оптический центр речи располагается в нижней теменной дольке слева в угловой извилине. При поражении центра наступает алексия – неспособность читать и понимать написанное.

Литература по теме
1. Брин В.Б. Физиология человека в схемах и таблицах. Р-на-Д, 1999.
2. Воронова Н.В., Климова Н.М., Менджерицкий А.М. Анатомия центральной нервной системы. М., 2005.
3. Леонтьева Н.Н., Маринова К.В. Анатомия и физиология детского организма. М., «Просвещение», 1986.
4. Любимова З.В., Маринова А.А., Никитина А.А. Возрастная физиология, ч.1. М., 2004.
5. Сапин М.Р., Брыксина З.Г. Анатомия и физиология детей и подростков. М., 2004.

источник