Меню Рубрики

Световой поток с точки зрения квантовой теории света

Если первый закон внешнего фотоэффекта можно объяснить с помощью волновой теории излучения, то второй и третий законы явно противоречат этой теории.

Действительно, согласно волновой теории при увеличении интенсивности падающего на электрод излучения любой длины волны должны расти как энергия выбиваемых электронов, так и их количество, т. е. фототок, а в действительности растет только фототок. Далее, из волновой теории следует, что энергию, необходимую для вырывания электронов из металла, можно получить от излучения любой длины волны, если его интенсивность будет достаточно велика. Однако, например, при освещении цинковой пластинки желтыми лучами любой интенсивности фотоэффект не наблюдается, а ультрафиолетовое излучение ничтожной интенсивности вызывает фотоэффект. Все попытки объяснить эти особенности фотоэффекта на основе волновой теории оказались безуспешными. В 1905 г. А. Эйнштейн показал, что законы фотоэффекта могут быть объяснены при помощи квантовой теории.

Вспомним, что электрон может выйти за поверхность какого-нибудь тела, например металла, только тогда, когда его кинетическая энергия равна или больше работы выхода (§ 18.1). Пусть падающее на металл монохроматическое излучение состоит из фотонов с энергией Находящиеся в металле недалеко от поверхности электроны поглощают проникающие в металл фотоны, приобретая их энергию. Взаимодействие излучения с веществом в этом случае состоит из огромного множества элементарных процессов, в каждом из которых один электрон поглощает целиком один квант энергии. Если поглощенная энергия больше работы выхода, то электроны могут вылететь из металла. При этом часть поглощенной энергии затратится на совершение работы выхода, а оставшаяся часть составит кинетическую энергию электрона.

Очевидно, наибольшей кинетической энергией будут обладать электроны, которые поглотят кванты энергии вблизи поверхности металла и вылетят из него, не успев потерять энергию при столкновениях с другими частицами металла. Математически это выражается уравнением Эйнштейна для внешнего фотоэффекта:

Квантовая теория дает следующие объяснения законам фотоэффекта. При увеличении интенсивности монохроматического излучения растет число поглощенных металлом квантов энергии, а следовательно, и число вылетающих из него электронов, поэтому фототок прямо пропорционален интенсивности излучения (первый закон).

Из соотношения (35.6) видно, что кинетическая энергия вылетающих электронов зависит только от рода металла и от частоты (или длины волны излучения А), т. е. от энергии фотонов, а от интенсивности излучения не зависит (второй закон).

Если энергия фотонов меньше работы выхода, то при любой интенсивности излучения электроны вылетать из металла не будут (третий закон). Длину волны, соответствующую красной границе фотоэффекта для какого-либо металла, можно найти из формулы (35.6а), приняв кинетическую энергию электронов равной нулю:

Значения длины волны, соответствующие красной границе фотоэффекта, рассчитанные по формуле (35.7) и измеренные на опыте, хорошо совпадают. Опыты подтвердили также, что кинетическая энергия электронов растет с увеличением частоты излучения в полном соответствии с уравнением Эйнштейна (35.6). В опытах по фотоэффекту не только со светом, но также с рентгеновскими и гамма-лучами квантовая теория излучения получила блестящее экспериментальное подтверждение.

источник

Внешний фотоэффект. Экспериментальные законы фотоэффекта. Квантовая теория фотоэффекта. Объяснение закономерностей фотоэффекта.

Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

Явление внешнего фотоэффекта открыто в 1887 г. Герцем, а детально исследовано Столетовым. Теория фотоэффекта на основе квантовых представлений создана Эйнштейном.

Явление фотоэффекта получило широкое практическое применение. Приборы, в основе принципа действия которых лежит фотоэффект, называются фотоэлементами. Фотоэлементы, использующие внешний фотоэффект, преобразуют энергию излучения в электрическую лишь частично. Так как эффективность преобразования небольшая, то в качестве источников электроэнергии фотоэлементы не используют, но зато применяют их в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

А.Г. Столетов установил три закона фотоэффекта, не утратившие своего значения и в настоящее время. В современном виде законы внешнего фотоэффекта формулируются следующим образом:

I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила тока насыщения пропорциональна энергетической освещенности Ee катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой ν.

III. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны, в металле возникают колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл, – тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого электрона из металла должна была бы зависеть от интенсивности падающего света, т.к. с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Т.к., по волновой теории, энергия, передаваемая электроном, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Кроме того, волновая теория фотоэффекта не смогла объяснить безынерционность фотоэффекта, установленную опытами. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

Для объяснения закономерностей фотоэффекта А. Эйнштейн использовал квантовые представления о свете, введенные Планком для описания теплового излучения тел. Эйнштейн, анализируя флуктуации энергии излучения абсолютно чёрного тела пришёл, к выводу о том, что излучение ведёт себя так, как если бы оно состояло из N=W/(hv) независимых квантов энергии величиной hv каждый. По Эйнштейну, при распространении света, вышедшего из какой – либо точки, энергия распределяется не непрерывно во всё более возрастающем пространстве. Энергия состоит из конечного числа локализованных в пространстве квантов энергии. Эти кванты движутся, не делясь на части; они могут поглощаться и испускаться только как целое. Таким образом, Эйнштейн пришёл к выводу, что свет не только излучается, но и распространяется в пространстве и поглощается веществом в виде квантов. Порции светового излучения – кванты света – обладающие корпускулярными свойствами, т. е. свойствами частиц, являющимися носителями свойств электромагнитного поля. Эти частицы получили название фотонов. С точки зрения квантовых представлений о свете энергия монохроматического излучения, падающего на металл состоит из фотонов с энергией Wф=hv и равна Wсв=NWф=Nhv а поток энергии света равен Ф=Wсв/t=Nhv/t=nфhv, где N – число фотонов, падающих на металл за время t; nф – число фотонов, падающих на металл за единицу времени. Взаимодействие излучения с веществом состоит из огромного числа элементарных актов, в каждом из которых один электрон целиком поглощает энергию одного фотона. Если энергия фотонов больше работы выхода или ей равна, то электроны вылетают из металла. При этом часть энергии поглощённого фотона тратится на выполнение работы выхода Ав, а остальная часть составляет кинетическую энергию фотоэлектрона. Поэтому Wф=Ав+Wк; hv=Ав+mv2/2. Это выражение называется уравнением Эйнштейна для фотоэффекта. Из него видно, что кинетическая энергия фотоэлектронов зависит от частоты падающего света (второй закон фотоэффекта). Если энергия квантов меньше работы выхода, то при любой интенсивности света электроны не вылетают. Этим объясняется существование красной границы фотоэффекта (третий закон фотоэффекта) .

Покажем теперь, как объясняется первый закон фотоэффекта на основе квантовых представлений о свете. Число высвобождаемых вследствие фотоэффекта электронов nе должно быть пропорционально числу падающих на поверхность квантов света nф; nе

nф ; nе=knф, где k – коэффициент, показывающий, какая часть падающих фотонов выбивает электроны из металла. (Заметим, что лишь малая часть квантов передаёт свою энергию фотоэлектронам. Энергия остальных квантов затрачивается на нагревание вещества, поглощающего свет). Число фотонов nф определяет поток энергии падающего света. Таким образом, квантовая теория света полностью объясняет все закономерности внешнего фотоэффекта. Тем самым неоспоримо экспериментально подтверждается то, что свет помимо волновых свойств обладает корпускулярными свойствами.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9454 — | 7442 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Задумывались ли вы о том, что собой представляют на самом деле многие световые явления? Для примера возьмем фотоэффект, тепловые волны, фотохимические процессы и тому подобное – все это квантовые свойства света. Если бы они не были открыты, труды ученых не двинулись бы с мертвой точки, собственно, как и научно-технический прогресс. Изучают их в разделе квантовой оптики, который неразрывно связан с одноименным разделом физики.

До недавнего времени четкую и понятную трактовку данному оптическому явлению дать не могли. Им успешно пользовались в науке и повседневной жизни, на его основе строили не только формулы, но и целые задачи по физике. Сформулировать окончательное определение получилось лишь у современных ученых, которые подводили итоги деятельности своих предшественников. Итак, волновые и квантовые свойства света – это следствие особенностей его излучателей, коими являются электроны атомов. Квант (или фотон) образуется за счет того, что электрон переходит на пониженный энергетический уровень, тем самым генерируя электро-магнитные импульсы.

Предположение о наличии у света квантовых свойств появилось в XIX столетии. Ученые открыли и усердно изучали такие явления, как дифракция, интерференция и поляризация. С их помощью была выведена электромагнитная волновая теория света. Она базировалась на ускорении движения электронов во время колебания тела. За счет этого происходило нагревание, а следом за ним появлялись световые волны. Первую авторскую гипотезу на сей счет сформировал англичанин Д. Рэлей. Он расценивал излучение как систему одинаковых и постоянных волн, причем в замкнутом пространстве. Согласно его выводам, при уменьшении длины волн мощность их должна была непрерывно возрастать, более того, требовалось наличие ультрафиолетовых и рентгеновских волн. На практике же все это не подтвердилось, и за дело взялся другой теоретик.

В самом начале XX века Макс Планк – физик немецкого происхождения – выдвинул интересную гипотезу. Согласно ей, излучение и поглощения света происходит не непрерывно, как думали ранее, а порционно – квантами, или, как их еще называют, фотонами. Была введена постоянная Планка – коэффициент пропорциональности, обозначаемый буквой h , и он был равен 6,63·10 -34 Дж·с. Дабы высчитать энергию каждого фотона, требовалась еще одна величина – v – частота света. Постоянная Планка умножалась на частоту, и в результате получали энергию отдельно взятого фотона. Так немецкий ученый точно и грамотно закрепил в одной простой формуле квантовые свойства света, которые ранее были обнаружены Г. Герцем и обозначены им как фотоэффект.

Как мы уже сказали, ученый Генрих Герц был первым, кто обратил внимание на незамечаемые ранее квантовые свойства света. Фотоэффект был открыт в 1887 году, когда ученый соединил освещенную цинковую пластину и стержень электрометра. В случае если до пластины доходит положительный заряд, электрометр не разряжается. Если излучается заряд отрицательный, то прибор начинает разряжаться, как только на пластину попадает луч ультрафиолета. В ходе данного практического опыта было доказано, что пластина под воздействием света может излучать отрицательные электрические заряды, которые впоследствии получили соответствующее название — электроны.

Практические эксперименты с электронами проводил русский исследователь Александр Столетов. Для своих опытов он использовал вакуумный стеклянный баллон и два электрода. Один электрод использовался для передачи энергии, а второй был освещаемым, и к нему подводился отрицательный полюс батареи. В ходе данной операции начинала возрастать сила тока, но через некоторое время она становилась постоянной и прямо пропорциональной излучению светового потока. В результате было выявлено, что кинетическая энергия, а также задерживающие напряжения электронов не зависят от мощности светового излучения. Но увеличение частоты света заставляет расти данный показатель.

В ходе развития теории Герца и практики Столетова были выведены три основные закономерности, по которым, как оказалась, функционируют фотоны:

1. Мощность светового излучения, которое падает на поверхность тела, прямо пропорциональна силе тока насыщения.

2. Мощность светового излучения никак не влияет кинетическую энергию фотоэлектронов, а вот частота света является причиной линейного роста последней.

3. Существует некая «красная граница фотоэффекта». Суть заключается в том, что если частота меньше минимального показателя частоты света для данного вещества, то фотоэффекта не наблюдается.

После формулы, выведенной Максом Планком, наука столкнулась с дилеммой. Ранее выведенные волновые и квантовые свойства света, которые были открыты чуть позже, не могли существовать в рамках общепринятых физических законов. В соответствии с электромагнитной, старой теорией, все электроны тела, на которое попадает свет, должны приходить в вынужденное колебание на равных частотах. Это порождало бы бесконечно большую кинетическую энергию, что никак невозможно. Более того, для накопления необходимого количества энергии электронам нужно было пребывать в состоянии покоя десятки минут, в то время как явление фотоэффекта на практике наблюдается без малейшей задержки. Дополнительная путаница возникала также из-за того, что энергия фотоэлектронов не зависела от мощности светового излучения. Кроме того, еще не была открыта красная граница фотоэффекта, а также не была высчитана пропорциональность частоты света кинетической энергии электронов. Старая теория не смогла четко объяснить видимые глазу физические явления, а новая была еще не до конца отработанной.

Лишь в 1905 году гениальный физик А. Эйнштейн выявил на практике и четко сформулировал в теории, какова она — истинная природа света. Волновые и квантовые свойства, открытые с помощью двух противоположных друг другу гипотез, в равных частях присущи фотонам. Для полноты картины не хватало лишь принципа дискретности, то есть точного местонахождения квантов в пространстве. Каждый квант – это частица, которая может поглощаться или излучаться как единое целое. Электрон, «проглатывая» внутрь себя фотон, увеличивает свой заряд на значение энергии поглощаемой частицы. Далее, внутри фотокатода электрон движется к его поверхности, сохраняя при этом «двойную порцию» энергии, которая на выходе превращается в кинетическую. Таким простым образом и осуществляется фотоэффект, в котором отсутствует запоздалая реакция. У самого финиша электрон выпускает из себя квант, который и падает на поверхность тела, излучая при этом еще больше энергии. Чем больше количество выпущенных фотонов – тем мощнее излучение, соответственно, и колебание световой волны растет.

Читайте также:  Портит ли зрение чтение при плохом освещении

После открытий, сделанных немецкими учеными на заре ХХ столетия, началось активное применение квантовых свойств света для изготовления различных приборов. Изобретения, принцип действия которых заключается в фотоэффекте, называют фотоэлементами, простейший представитель которых – вакуумный. В числе его недостатков можно назвать слабую проводимость тока, низкую чувствительность к излучению длинных волн, из-за чего он не может быть использован в цепях переменного тока. Вакуумный прибор широко используется в фотометрии, им измеряют силу яркости и качества света. Также он играет важную роль в фототелефонах и в процессе воспроизведения звука.

Это уже совсем иной тип приборов, в основе которых лежат квантовые свойства света. Их назначение – изменение концентрации носителей тока. Данное явление иногда называют внутренним фотоэффектом, и он составляет основу работы фоторезисторов. Данные полупроводники играют очень важную роль в нашей повседневной жизни. Впервые их начали использовать в ретро-автомобилях. Тогда они обеспечивали работу электроники и аккумуляторов. В середине ХХ века подобные фотоэлементы стали применять для строительства космических кораблей. До сих пор за счет внутреннего фотоэффекта работают турникеты в метро, портативные калькуляторы и солнечные батареи.

Свет, природа которого стала лишь частично доступна науке в ХХ веке, на самом деле влияет на химические и биологические процессы. Под воздействием квантовых потоков начинается процесс диссоциации молекул и их слияние с атомами. В науке такое явление называется фотохимией, а в природе одним из его проявлений является фотосинтез. Именно за счет световых волн в клетках производятся процессы по выбросу определенных веществ в межклеточное пространство, за счет чего растение приобретает зеленый оттенок.

Влияют квантовые свойства света и на человеческое зрение. Попадая на сетчатку глаза, фотон провоцирует процесс разложение молекулы белка. Данная информация транспортируется по нейронам в мозг, и после ее обработки мы можем видеть все при свете. С наступлением темноты молекула белка восстанавливается, и зрение аккомодируется к новым условиям.

В ходе данной статьи мы выяснили, что главным образом квантовые свойства света проявляются в явлении, называемом фотоэффектом. Каждый фотон имеет свой заряд и массу, и при столкновении с электроном попадает внутрь него. Квант и электрон становятся одним целым, и их совместная энергия превращается в кинетическую, что, собственного говоря, и требуется для осуществления фотоэффекта. Волновые колебания при этом могут увеличить производимую фотоном энергию, но лишь до определенного показателя.

Фотоэффект в наши дни является незаменимой составляющей большинства видов техники. На его основе строят космические лайнеры и спутники, разрабатывают солнечные батареи, используют как источник вспомогательной энергии. Кроме того, световые волны оказывают огромное влияние на химико-биологические процессы на Земле. За счет простых солнечных лучей растения становятся зелеными, земная атмосфера окрашивается во всю палитру синего цвета, и мы видим мир таким, каков он есть.

источник

Прародителем данной теории является Исаак Ньютон, который первый начал говорить о природе света. Для того времени характерно осмысление физических процессов через быт, поэтому появление теории света вполне закономерно. В 17 веке многие физические процессы осмыслялись и пересматривались, поэтому эта теория не стала чем-то сверхнеестественным и диким.

В чём заключалась идея Ньютона? Он заключил, что корпускулярный поток энергии порождает свет. Многие коллеги не разделяли эту позицию и склонялись больше к тому, что порождают свет волны (то есть были приверженцами волновой теории). Таким образом, образовалось два течения, представители которых пытались объяснить одно и то же явление (в данном случае – появление света) описать посредством разных теорий.

Более ранние представления исследователей не удовлетворяли пытливый ум Ньютона, так как к нему точно пришло осознание того, что свет появлялся посредством интерференции. Данная теория была признана не сразу, конечно ей пришлось немного отлежаться. Но зато теперь миру известна настоящая природа вещей. Обосновав эту теорию ещё в начале своей деятельности, Ньютон создал теорию и теоретическую базу для исследований на несколько веков вперёд. Эти представления никак не укладывались в представления научного сообщества того времени, скорее даже – она противоречила всему, что было доказано и принято за истину веками ранее.

Дело Ньютона в 19 веке продолжил М. Фарадей, который пошёл дальше и обосновал связь света с магнетизмом. Магнетизм он до этого изучал большое количество времени и опыты, которые проводились, дали основания полагать, что колебания магнитных волн и появление света связаны между собой. При этом им была установлена даже скорость таких волн, она была конечной. Как её вычислили? Опытным путём, но надо сказать, что точные цифры пришли в науку намного позже. Теперь мы знаем скорость света и у нас не возникает даже мысли о том, что так было не всегда. А тогда люди бились за свои идеи, даже если никто кроме них в эти идеи всерьёз не верил. Фарадеем было введено понятие магнитного поля, сделаны предварительные выводы и разработаны методы, но до квантовой теории света всё ещё не доходило. Лабораторная работа велась очень кропотливо и тщательно, но результаты тогда не казались заявками на победу.

Уже в конце 19 века, а точнее – в 1864 году при помощи математических методов было доказано, что связь между магнетизмом и оптикой действительно есть. Но этих данных было всё ещё недостаточно чтобы сформировать полноценную теорию.

Первым учёным, который действительно смог сконцентрировать весь предыдущий опыт и сформулировать чёткие математические закономерности для обоснования теории электромагнитного поля, был Д.-К. Максвелл. В своих исследованиях он сделал упор на опытах Фарадея, и при помощи имеющихся теорий и формул объяснил эти явления. При помои созданной им теории впоследствии были объяснены все явления, касающиеся магнетизма, которые в тот момент находились на пике популярности и были востребованы. Максвеллом было введено определение понятия электромагнитной картины, а впоследствии этим понятием апеллировало буквально всё научное сообщество.

Среди отечественных учёных, хотелось бы упомянуть российского физика Лебедева. Он очень корректно и ёмко подхватил идеи своих предшественников и развил их. В своей теории он определил воздействие радиоволн на различные физические явления, опираясь на практические опыты. В дальнейшем эту теорию стал дорабатывать Герц, который сделал свой вклад в науку благодаря появлению специализированной аппаратуры. Именно благодаря этим людям у нас сейчас есть все средства связи, а тогда это начало появляться и развиваться с телеграфа, радио и телевидения.

В начале прошлого века появились первые предпосылки для возможности формирования квантовой теории света. Имея такой багаж опыта и открытий, задача исследователей буквально лежала на поверхности.

Определение 1
Понятие квантовой теории ввёл М. Планк, который связал длину волны с интенсивностью теплового излучения, обосновав это математически. Когда волна нагревалась, то происходили различные волновые изменения. Это стало большим открытием для всего научного сообщества и повергло всех в шок

Так как в это время всё интенсивнее и чётче начинает прорисовываться контур изучения атомов (благодаря Н. Бору), то теория квантов не стала здесь каким-то культурным шоком. Теория атомов фактически регламентировала правила движения в твёрдых телах, поэтому квантовая физика видела в этом своё начало и развитие. Труды М. Планка в дальнейшем были по достоинству оценены, настолько, что за своё открытие он удостоился Нобелевской премии.

В начале прошлого века наука очень стремительно развивалась, появлялись всё новые и новые идеи, выдвигались всё новые и новые теории. Конечно, научное сообщество не могло оставить это без внимания и начали набирать обороты появления новых направлений. Исследователи могли изучать одно и то же, но разными способами – и это вызывало противоречия, споры и конфликты. Ряд исследователей придерживались классического подхода и, вслед за А. Эйнштейном, пытались дать жизнь его теориям, опираясь на современные реалии. Эйнштейном была выдвинута мысль, что природа вещества и света двойственны, а его последователи вложили эту гипотезу в рассуждения о дуализме мира. Актуальной тогда была версия относительно того, что световая волна обязательно соответствует каждому отдельному электрону, а опыты Эйнштейна эти тезисы закрепили и связали с теорией относительности. Нельзя точно оценить последствия этих научных сдвигов, но очевидно, что это дало огромный толчок в этом направлении.

Когда дуализм волновой природы был закреплён в качестве теории, началось развитие волновой механики, были заложены волновые свойства микрочастиц и выявлены новые методы исследования структуры веществ. Далее следовали принципы времени, материи и пространства на основе общей теории относительности. И так постепенно всё вело к тому, что квантовой теории света просто не может не быть.

Определение 2
Это – процесс, когда нейтроны испускаются металлов под воздействием световых лучей.

Этот эффект изучал известный исследователь А. Столетов, а, в дальнейшем, А.Эйнштейн на практике доказал его тезисы и вывел химические свойства света, температурные аспекты и ряд иных явлений.

источник

В конце 17 века начали зарождаться новые представления о физических процессах. Они формировались с учетом базовых понятий о природе света. Основоположниками теорий волновой и корпускулярной теории света стали Исаак Ньютон и ряд иных ученых, которые придерживались другой точки зрения.

Британский исследователь полагал, что зарождение и развитие света представляет собой корпускулярный поток энергии. Остальные оппоненты по научному миру тех лет склонялись к волновой теории. Так возникло два основных течения, которые положили начало изучения всей квантовой теории света.

Ньютон обнаружил так называемую интерференцию света. Эту теорию он обосновал в своих ранних работах, она стала классическим представлением на несколько столетий. В более поздних научных изысканиях ряд европейских ученых смогли обосновать первые эксперименты со светом, проведенные еще три столетия назад. Мир увидел новую теорию волновой природы света, что противоречило более ранним представлениям.

Попробуй обратиться за помощью к преподавателям

Майкл Фарадей в середине 19 века продолжил труды своего коллеги и установил ощутимую связь между светом и магнетизмом, который он пристально изучал на протяжении нескольких лет. Его опыты показали, что магнитные колебания и световые напрямую связаны между собой и являются по своей направленности поперечными. Он установил также скорость распространения таких волн. Они двигались с конечной скоростью. Позже ее вычислили с большой долей достоверности. Сегодня мы знаем эту величину как скорость света. В эксперименты Фарадея легла его собственная теория, изучающая электромагнетизм. Теперь было введено дополнительное понятие для магнитного поля, однако у автора работ до сих пор отсутствовало многие математические методы при описании подобных явлений, которые он фиксировал в своей лаборатории.

Позже подобная связь была вычислена математическими методами. В 1864 году была установлена практическая связь между оптикой и явлениям магнетизмом. Во многом это стало возможным при помощи интуитивных возможностей исследователей того времени, поскольку точных измерений и основополагающих исследований не проводилось или их было крайне недостаточно для формирования полноценной теории света.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Д.-К. Максвелл стал первым ученым, который опираясь на предыдущие опыты Фарадея смог сформулировать в математических формулах теорию электромагнитного поля. При помощи нее были объяснены все основные понятия и явления электромагнетизма, которые до сих пор лежат в основе современных исследований. Максвелл ввел понятие электромагнитной картины мира и ее подхватили еще ряд ученых того времени. Развитием идей теории света занялся российский физики Лебедев. Он внес решающую лепту в освоении этой дисциплины и провел ряд практических опытов, определяя зависимость и взаимодействие радиоволн в остальных физических явлениях. Чуть позже ученые Герц смог сделать первые полезные открытия и создать аппаратуру, которая перевернула развитие человеческой цивилизации. В частности, были созданы устройства беспроводной связи от телеграфа до телевидения.

В начале 20 века на основе всех предыдущих открытий стало возможным сформулировать первые научные тезисы самой квантовой теории света. К тому времени были сделаны основополагающие открытия в области строения атома, поэтому задача ученых значительно упростилась.

М. Планк вывел математическую закономерность, связывающую интенсивность теплового излучения с длиной волны. Она изменялась под воздействием нагрева вещества. Подобная теория получила название квантовой и произвела революцию во всем течении развития физики.

Через некоторое время теория квантов была надежно прицеплена к новой теории атомов, которую развивал Нильс Бор. Она объяснила природу движения элементарных частиц в твердых телах. Это стало отправной точкой развития квантовой физики. Спустя некоторое время М. Планк получил Нобелевскую премию за свое открытие.

В начале 20 века в научно среде вновь возникла вона противоречий между учеными разной направленности. Некоторые исследователи пытались увязать предыдущие знания с теориями, выдвинутыми Альбертом Эйнштейном. Он считал, что существует двойственность природы света и вещества. Это легло в основу гипотетических предположений о дуализме микромира и разноплановости существования веществ в объективной реальности. Существовала версия, что каждому отдельному электрону должна была параллельно соответствовать световая волна. После соотношения с высказанной теорией относительности Эйнштейна подобные тезисы были подтверждены математическими вычислениями, что привело к ряду новых интересных открытий.

После открытия двойственной волновой природы электронов были сформулированы:

  • основы волновой механики;
  • волновые свойства микрочастиц;
  • новые методы исследования структуры веществ.

Затем были разработаны общие теории относительности, в которых были установлены принципы существования времени, материи и пространства. Эти знания легли в основу квантовой теории света, которая постигает новые высоты на современном этапе развития науки и не является конечной.

Читайте также:  Ничто так не мешает видеть как точка зрения эссе

Испускание металлом электронов под воздействием на него света получило название фотоэлектрического эффекта.

Его на протяжении всей своей научной жизни пытался изучать российский исследователь А. Столетов. Физик изучал свойства железа и использовал материал в своих экспериментах со световыми волнами. Через некоторое время он установил основные понятия нового явления и заявил, что есть законы фотоэлектрического эффекта, то есть превращения энергии света в электрическую энергию. В ходе проведения опытов удалось понять, что при изменении интенсивности освещения способны меняться только числа испускаемых электронов. Максимальная кинетическая энергия, вылетающих из металла электронов, не зависела от интенсивности освещения. Она менялась только при изменении частоты падающего на металл света.

Эйнштейн смог доказать правильность исследований Столетова, а также:

  • закономерности химического действия света;
  • температурную зависимость теплоемкости твердых тел;
  • ряд других явлений.

Эта теория стала весьма полезной в формировании представлений о развитии в строении атомов и молекул на век вперед.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

источник

В 1900 г. Макс Планк [1] показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями — квантами. При этом энергия E каждой такой порции связана с частотой излучения v соотношением, получившим название уравнения Планка:

Здесь коэффициент пропорциональности h, так называемая постоянная Планка, — универсальная константа, равная 6,626 • IO -34 Дж [1] с.

Сам Планк долгое время полагал, что испускание и поглощение света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглощаться непрерывно. Однако в 1905 г. А. Эйнштейн, анализируя явление фотоэлектрического эффекта, пришел к выводу, что электромагнитная (лучистая) энергия существует только в форме квантов и что, следовательно, излучение представляет собой поток неделимых материальных «частиц» энергия которых определяется уравнением Планка.

Фотоэлектрическим эффектом называется испускание металлом электронов под действием падающего на него света. Это явление было подробно изучено в 1888—1890 гг. А.Г. Столетовым [3] . Схема установки для измерения фотоэффекта изображена на рис. 4. Если поместить установку в вакуум и подать на пластинку M отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фототоком), носителями которого служат электроны, вырываемые светом из металла.

Оказалось, что при изменении интенсивности освещения изменяется только число испускаемых металлом электронов, т.е. сила фототока.

Но максимальная кинетическая энергия каждого вылетевшего из металла электрона не зависит от интенсивности освещения, а изменяется только при изменении частоты падающего на металл света. Именно с увеличением длины волны (т.е. с уменьшением частоты [4] ) энергия испускаемых металлом электронов уменьшается, а затем, при определенной для каждого металла длине волны, фотоэффект исчезает и не проявляется даже при очень высокой интенсивности освещения. Так, при освещении красным или оранжевым светом натрий не проявляет фотоэффекта и начинает испускать электроны только при длине волны меньше 590 нм (желтый свет), у лития фотоэффект обнаруживается при еще меньших длинах волн, начиная с 516 нм (зеленый свет), а вырывание электронов из платины под действием видимого света вообще не происходит и начинается только при облучении платины ультрафиолетовыми лучами.

Рис. 4. Схема установки для наблюдения фотоэлектрического эффекта:

M — пластинка испытуемого металла; C — металлическая сетка; Б — источник постоянного электрического напряжения; Г — гальванометр

Эти свойства фотоэлектрического эффекта совершенно необъяснимы с позиций классической волновой теории света, согласно которой эффект должен определяться (для данного металла) только количеством энергии, поглощаемой поверхностью металла в единицу времени, но не должен зависеть от типа излучения, падающего на металл. Однако эти же свойства получают простое и убедительное объяснение, если считать, что излучение состоит из отдельных порций, фотонов, обладающих вполне определенной энергией.

В самом деле электрон в металле связан с атомами металла, так что для его вырывания необходима затрата определенной энергии. Если фотон обладает нужным запасом энергии (а энергия фотона определяется частотой излучения!), то электрон будет вырван, фотоэффект будет наблюдаться. В процессе взаимодействия с металлом фотон полностью отдает свою энергию электрону, ибо дробиться на части фотон не может. Энергия фотона будет частично израсходована на разрыв связи электрона с металлом, частично на сообщение электрону кинетической энергии движения. Поэтому максимальная кинетическая энергия выбитого из металла электрона не может быть больше разности между энергией фотона и энергией связи электрона с атомами металла. Следовательно, при увеличении числа фотонов, падающих на поверхность металла в единицу времени (т.е. при повышении интенсивности освещения), будет увеличиваться только число вырываемых из металла электронов, что приведет к возрастанию фототока, но энергия каждого электрона возрастать не будет. Если же энергия фотона меньше минимальной энергии, необходимой для вырывания электрона, фотоэффект не будет наблюдаться при любом числе падающих на металл фотонов, т.е. при любой интенсивности освещения.

Квантовая теория света, развитая Эйнштейном, смогла объяснить не только свойства фотоэлектрического эффекта, но и закономерности химического действия света, температурную зависимость теплоемкости твердых тел и ряд других явлений. Она оказалась чрезвычайно полезной и в развитии представлений о строении атомов и молекул.

Альберт Эйнштейн (1879-1955)

Альберт Эйнштейн, выдающийся физик, родился 14 марта 1879 г. в Ульме (Германия), с 14 лет жил в Швейцарии. Преподавал в средней школе, работал экспертом патентного бюро, с 1909 г. — профессор Цюрихского университета (Швейцария), с 1914 до 1933 г. — профессор Берлинского университета. C 1933 г. в знак протеста против гитлеровского режима отказался от германского подданства и от звания члена Прусской Академии наук.

C 1933 г. до конца жизни — профессор Института фундаментальных исследований в Принстоне (США).

C 1905 г. Эйнштейн разработал частную, ак 1916 г. — общую теорию относительности, заложившую основы современных представлений о пространстве, тяготении и времени; осуществил основополагающие исследования в области квантовой теории света; ряд его важных работ посвящен теории броуновского движения, магнетизму и другим вопросам теоретической физики. В 1921 г. был награжден Нобелевской премией.

Из квантовой теории света следует, что фотон не способен дробиться: он взаимодействует как целое с электроном металла, выбивая его из пластинки; как целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ее потемнение в определенной точке, и т.д. В этом смысле фотон ведет себя подобно частице, т.е. проявляет корпускулярные свойства. Однако фотон обладает и волновыми свойствами: это проявляется в волновом характере распространения света, в способности фотона к интерференции и дифракции. Фотон отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от «классической» волны — неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон не является, строго говоря, ни частицей, ни волной — ему присуща кор- пускулярно-волновая двойственность.

источник

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: изучение квантовой теории света и световых явлений, объясняемых этой теорией.

Задачи:

  • образовательные: раскрыть физическую сущность понятий: абсолютно черное тело, ультрафиолетовая катастрофа, квант, постоянная Планка, ввести понятие фотоэффект, познакомить учащихся с открытием явления и его исследованием, рассмотреть проблемы физики начала ХХI века;
  • развивающие: развивать наблюдательность, умение логически мыслить, анализировать факты и явления на основе теоретических представлений, расширять познавательный интерес, формировать умение выделять признаки сходства и различия в описании физических явлений;
  • воспитательные: способствовать расширению кругозора учащихся, воспитывать культуру общения, приобщать учащихся к достижениям отечественной науки;
  • метапредметные: формировать умение воспринимать альтернативные точки зрения и высказывать обоснованные аргументы «за» и «против», находить требуемую информацию в различных источниках, визуальную информацию переводить в вербальную знаковую систему.

План.

  1. Зарождение квантовой теории.
  2. Опыты Герца и Столетова.
  3. Фотоэффект. Законы фотоэффекта.
  4. Уравнение Эйнштейна для фотоэффекта.
  5. Фотоны.
  6. Давление света.
  7. Применение фотоэффекта.
  8. Химическое действие света. Фотография.
  9. Единство волновых и квантовых свойств света.

I. Вступительное слово учителя

II. Устный журнал (показ слайдов презентации сопровождается чтением стихотворения).

Как только ясно стало всем,
Что Максвелл прав был не совсем,
Что уравнения его для микромира – ничего,
Все стали думать и гадать, предполагать, опровергать.
У Планка думать был талант, он потому придумал квант.
И даже дальше он пошел и постоянную нашел.
Герц, ставя опыты давно, открыл явление одно.
О нем он миру рассказал, “фотоэффект” названье дал.
Столетов был ужасно рад и опытов поставил ряд.
Закона два открыл подряд. Какой чудесный результат!
Эйнштейн свой вклад внести решил, фотоэффект он объяснил.
Открытие прекрасное – его “граница красная”.
Тут начал Лебедев “чудить”, стал трудный опыт проводить:
Подвесил лепестки на нить, увидел – может свет давить.
Лишен покоя и заряда, фотон летает, где не надо,
И импульс свой теряет где-то — корпускулярны свойства света.
Фотоэффект теперь везде, свет служит людям на Земле.
Свет научились мы копить, кино вдруг стало говорить.
Чудесен сколь фотоэффект, теперь уже “химичит” свет.
Нам этот свет дает дышать, ведь листья могут превращать
Газ углекислый в кислород, коль свет на листья упадет.
Мы держим аппарат в руках. Щелк-щелк, и вы уже “в веках”.
Мы дарим всем портреты, за то спасибо свету.

III. Сообщения учащихся

1. Зарождение квантовой теории

Противоречие между классической электродинамикой Максвелла и закономерностями распределения в спектре теплового излучения (нагретое тело, непрерывно теряя энергию вследствие излучения электромагнитных волн, должно охладиться до абсолютного нуля, но в действительности это не так)

Гипотеза Планка (Атомы испускают электромагнитную энергию отдельными порциями – квантами. Энергия каждой порции прямо пропорциональна частоте излучения. Е = h, где h = 6,63 * 10 -34 Дж . с – постоянная Планка, – частота излучения)

2. Фотоэффект. (Открыт Герцем. Исследован Столетовым)

Фотоэффектом называют вырывание электронов из вещества под действием света.

Опыты Герца и Столетова (Внешний фотоэффект: заряженную цинковую пластину присоединяют к электрометру, освещают кварцевой лампой; если заряд пластины “+”, то освещение пластины не влияет на быстроту разрядки электрометра, а если “-”, то он быстро разряжается. Фотоэффект вызывается ультрафиолетовым излучением.)

3. Законы Фотоэффекта.

Первый закон: количество электронов, вырываемых с поверхности металла за 1 секунду, прямо пропорционально поглощаемой за это время энергией световой волны.

Второй закон: максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от интенсивности света.

По графику зависимости фототока от напряжения дать понятие задерживающего напряжения и тока насыщения.

mv 2 /2 = eUз — максимальное значение кинетической энергии электронов.

4. Объяснение фотоэффекта Эйнштейном.

Законы Максвелла не могут объяснить, почему энергия фотоэлектронов определяется только частотой света и почему лишь при малой длине волны свет вырывает электроны. Свет имеет прерывистую структуру: излучается порциями, излученная порция световой энергии Е = h сохраняет свою индивидуальность. Поглотиться может только вся порция целиком.

h= А+ mv 2 /2 – уравнение Эйнштейна. Энергия порции света идет на совершение работы выхода и на сообщения электрону кинетической энергии. А – работа выхода – работа, которую нужно совершить для извлечения электрона из металла, она зависит от рода металла и состояния поверхности, от интенсивности света не зависит. Условия возникновения фотоэффекта: энергия кванта должна быть больше работы выхода.

min = A/h – красная граница фотоэффекта – минимальная частота

(max = кр = hc/A – максимальная длина волны), при которой еще возможен фотоэффект; зависит от рода металла.

При испускании и поглощении свет ведет себя подобно потоку частиц с энергией Е= hзависящей от частоты. Порция света похожа на частицу, ее называют фотоном или квантом.

m = h/c 2 — масса движущегося фотона.

Фотон не имеет массы покоя, т.е. он не существует в состоянии покоя и при рождении сразу приобретает скорость с = 3 * 10 8 м/с.

р = mc = h/c = h/ — импульс фотона (направлен по световому лучу). Чем больше частота излучения, тем больше энергия и импульс фотона.

6. Давление света.

Под действием электрического поля волны электроны совершают колебания. Электрический ток направлен вдоль линий напряженности электрического поля. Сила светового давления направлена в сторону распространения волны. Объяснение давления света с точки зрения квантовой теории: фотоны имеют массу, обладают импульсом, который передают телу. По закону сохранения импульса, импульс тела равен импульсу поглощенных фотонов. Покоящееся тело приходит в движение, импульс тела изменяется, следовательно, на тело действует сила. Световое давление играет большую роль во внутризвездных процессах.

7. Применение фотоэффекта:

  • озвучивание кино;
  • передача движущихся изображений;
  • станки и машины с программным управлением;
  • осуществление контроля качества изделий;
  • включение и выключение механизмов, освещения и т.д.

Заполнение таблицы учащимися

Название устройства Принцип действия Применение
Фоторезистор Изменение электропроводности под действием света В фотореле (для автоматизации производственных процессов, для контроля качества), в фототелеграфе, в звуковом кино
Фотоэлемент Преобразование световой энергии в электрическую В солнечных батареях (на ИСЗ и космических кораблях), гелиотехнических установках, в фотоэкспонометрах, в телевизионной связи

8. Химическое действие света. Фотография.

Химическое действие света проявляется в поглощении молекулами видимого и ультрафиолетового излучений и расщеплении этих молекул (выцветание тканей на солнце и образование загара).

Читайте также:  С точки зрения аристотеля политика была

Важнейшие химические реакции под действием света происходят в зеленых листьях и траве. Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на кислород и углерод. Как установил русский биолог К.А.Тимирязев, это происходит в молекулах хлорофилла под действием красных лучей солнечного спектра. Этот процесс называют фотосинтезом. Химическое действие света лежит в основе фотографии.

Задача 1: фотосинтез в зеленых листьях растений интенсивно происходит при поглощении красного света длиной волны 0,68 мкм. Вычислите энергию соответствующих фотонов, объясните зеленый цвет листьев (2,9 * 10 -19 Дж).

Задача 2: для уничтожения микробов в операционном помещении используют бактерицидные лампы. Вычислить энергию кванта излучения такой лампы, если длина его волны 0,25 мкм. Почему видимый свет не оказывает бактерицидного действия? (8 * 10 -19 Дж).

9. Единство волновых и квантовых свойств света.

Заполнить и проанализировать таблицу

Вид излучения Длина волны, м Энергия фотона, эВ Масса фотона, кг Импульс, кг м/с
Радиоизлучение 10 1,2 * 10 -6 2,2 * 10 -42 6,6 * 10 -34
Инфракрасное 10 -6 1,2 2,2 * 10 -36 6,6 * 10 -28
Видимое 5 * 10 -7 2,5 4,4 * 10 -36 1,3 * 10 -27
Ультрафиолетовое 10 -7 12,4 2,2 * 10 -35 6,6 * 10 -27
Рентгеновское 10 -9 1,2 * 10 3 2,2 * 10 -33 6,6 * 10 -25
Гамма-излучение 10 -14 1,2 * 10 8 2,2 * 10 -28 6,6 * 10 -20

Как изменяются энергия, масса и импульс фотонов при уменьшении длины волны?

В каких излучениях и почему заметнее проявляются волновые свойства? квантовые свойства?

Вывод: чем меньше длина волны (больше частота), тем больше энергия и импульс фотона и тем сильнее выраженные квантовые свойства света. При увеличении длины волны наиболее ярко проявляются волновые свойства. Свет обладает дуализмом (двойственностью свойств): при распространении проявляются его волновые свойства, а при излучении и поглощении (т.е. при взаимодействии с веществом) – корпускулярные (квантовые) свойства.

источник

Первые представления о природе света у древних греков и египтян. Построения Гюйгенса для определения направления преломленной волны. Квантовые свойства света, сущность эффекта А. Комтона. Схема экспериментальной установки для изучения фотоэффекта.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • ВВЕДЕНИЕ
  • 1. Развитие представлений о свете
  • 2. Квантовые свойства света: фотоэффект. Эффект Комтона
  • 3. Квантовая теория Планка
  • ЗАКЛЮЧЕНИЕ
  • СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку. Событие это осталось практически незамеченным. Между тем, историческая дата 14 декабря 1900 г., когда на заседании Берлинского физического общества Макс Планк впервые произнес слово «квант», имеет все основания стать одним из самых значительных событий в истории человечества. С этого дня начинается отсчет того кардинального переворота в научной мысли, который к настоящему времени привел к качественно новым фундаментальным научным достижениям квантовой теории. В результате, к настоящему времени оказалась заложенной основа тем грядущим масштабным и глубоким изменениям во всех сферах общества, которые ожидают нас в недалеком будущем.


Планку удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, проблему, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора, несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики, что и обусловило актуальность нашего исследования.


Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум-среда корпускулярная теория приводила к следующему виду закона преломления:


где c — скорость света в вакууме, х — скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений Гусейханов, М.К. Концепции современного естествознания: — М. : Дашков и К, 2005. — 692 с..


Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.


Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: х c.


Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение х нmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели невозможно было также понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока, пропорциональность максимальной кинетической энергии частоте света Дубнищева, Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: Учеб. пособие для вузов / Т.Я. Дубнищева. — Новосибирск : Сибирское унив. изд-во, 2003. — 407 с..

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = hн, где h — постоянная Планка Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций — квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hн одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта.

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты н (рис. 5), равен отношению постоянной Планка h к заряду электрона e:

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены Р. Милликеном (1914 г.) и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

где c — скорость света, лкр — длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10-19 Дж). В квантовой физике часто используется электрон-вольт в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон-вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные металлы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта лкр ? 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света Лебедев С.А. Концепции современного естествознания. — М.: 2007.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов.

Фотон движется в вакууме со скоростью c. Фотон не имеет массы, m = 0. Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах — корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом — корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии. Согласно волновой теории, электрон под действием периодического поля световой волны совершает вынужденные колебания на частоте волны и поэтому излучает рассеянные волны той же частоты Гусейханов, М.К. Концепции современного естествознания: — М. : Дашков и К, 2005. — 692 с..

Схема Комптона представлена на рис. 6. Монохроматическое рентгеновское излучение с длиной волны л0, исходящее из рентгеновской трубки R, проходит через свинцовые диафрагмы и в виде узкого пучка направляется на рассеивающее вещество-мишень P (графит, алюминий). Излучение, рассеянное под некоторым углом и, анализируется с помощью спектрографа рентгеновских лучей S, в котором роль дифракционной решетки играет кристалл K, закрепленный на поворотном столике. Опыт показал, что в рассеянном излучении наблюдается увеличение длины волны Дл, зависящее от угла рассеяния и:

где Л = 2,43·10-3 нм — так называемая комптоновская длина волны, не зависящая от свойств рассеивающего вещества. В рассеянном излучении наряду со спектральной линией с длиной волны л наблюдается несмещенная линия с длиной волны л0. Соотношение интенсивностей смещенной и несмещенной линий зависит от рода рассеивающего вещества.

Рис.6. Схема эксперимента Комптона

На рис.7 представлены кривые распределения интенсивности в спектре излучения, рассеянного под некоторыми углами.

Рис. 7. Спектры рассеянного излучения

Объяснение эффекта Комптона было дано в 1923 году А. Комптоном и П. Дебаем (независимо) на основе квантовых представлений о природе излучения. Если принять, что излучение представляет собой поток фотонов, то эффект Комптона есть результат упругого столкновения рентгеновских фотонов со свободными электронами вещества. У легких атомов рассеивающих веществ электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными. В процессе столкновения фотон передает электрону часть своей энергии и импульса в соответствии с законами сохранения Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М., 2004.

Рассмотрим упругое столкновение двух частиц — налетающего фотона, обладающего энергией E0 = hн0 и импульсом p0 = hн0 / c, с покоящимся электроном, энергия покоя которого равна Фотон, столкнувшись с электроном, изменяет направление движения (рассеивается). Импульс фотона после рассеяния становится равным p = hн / c, а его энергия E = hн нmin.

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии.


Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными.


Идея квантования является одной из величайших физических идей. Оказалось, что многие величины считавшиеся непрерывными, имеют дискретный ряд значений. На базе этой идеи возникла квантовая механика, описывающая законы поведения микрочастиц

источник