Меню Рубрики

Теория возникновения жизни с научной точки зрения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ФАКУЛЬТЕТ СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ

КАФЕДРА ОСНОВ ДЕФЕКТОЛОГИИ

по дисциплине «Естествознание»

«Основные гипотезы о возникновении жизни на Земле».

студентка Iкурса 101 группы

заочного отделения (бюджетная

2. ТЕОРИЯ СТАЦИОНАРНОГО СОСТОЯНИЯ…………..……………….….2

3. ТЕОРИЯ САМОПРОИЗВОЛЬНОГО САМОЗАРОЖДЕНИЯ…………..…3

6. СОВРЕМЕННЫЕ ВОЗЗРЕНИЯ НА ПРОИСХОЖДЕНИЕ ЖИЗНИ НА ЗЕМЛЕ…………………………………………………………………………. 12

Проблема происхождения жизни на Земле и возможности ее существования в других областях Вселенной издавна привлекала внимание как ученых и философов, так и простых людей. За последние годы интерес к этой «вечной проблеме» значительно возрос.

Это обусловлено двумя обстоятельствами: во-первых, значительными успехами в лабораторном моделировании некоторых этапов эволюции материи, приведшей к зарождению жизни, и, во-вторых, стремительным развитием космических исследований, делающих все более реальным непосредственный поиск каких-либо форм жизни на планетах Солнечной системы, а в будущем и за ее пределами.

Происхождение жизни — один из самых таинственных вопросов, исчерпывающий ответ на который вряд ли когда-нибудь будет получен. Множество гипотез и даже теорий о возникновении жизни, объясняющих различные стороны этого явления, неспособны пока что преодолеть существенное обстоятельство — экспериментально подтвердить факт появления жизни. Современная наука не располагает прямыми доказательствами того, как и где возникла жизнь. Существуют лишь логические построения и косвенные свидетельства, полученные путем модельных экспериментов, и данные в области палеонтологии, геологии, астрономии и т. п.

Теории, касающиеся возникновения жизни на Земле, разнообразны и далеко не достоверны. Наиболее распространенными теориями возникновения жизни на Земле являются следующие:

1. Жизнь была создана сверхъестественным существом (Творцом) в определенное время (креационизм).

2. Жизнь существовала всегда (теория стационарного состояния).

3. Жизнь возникала неоднократно из неживого вещества (самопроизвольное зарождение).

4. Жизнь занесена на нашу планету извне (панспермия).

5. Жизнь возникла в результате процессов, подчиняющихся химическим и физическим законам (биохимическая эволюция).

Креационизм (от лат. creaсio — создание) — философско-методологическая концепция, в рамках которой всё многообразие органического мира, человечества, планеты Земля, а также мир в целом, рассматриваются как намеренно созданные неким сверхсуществом (Творцом) или божеством. Никаких научных подтверждений этой точки зрения нет: в религии истина постигается через божественное откровение и веру. Процесс сотворения мира мыслится как имевший место лишь единожды и поэтому недоступный для наблюдения.

Теории креационизма придерживаются последователи почти всех наиболее распространенных религиозных учений (особенно христиане, мусульмане, иудеи). Согласно этой теории, возникновение жизни относится к какому-то определённому сверхъестественному событию в прошлом, которое можно вычислить. В 1650 году архиепископ Ашер из г. Арма (Ирландия) вычислил, что Бог сотворил мир в октябре 4004 г. до н. э. и закончил свой труд 23 октября в 9 часов утра, создав человека. Ашер получил эту дату, сложив возраст всех людей, упоминающихся в Библейской генеалогии, от Адама до Христа («кто кого родил»). С точки зрения арифметики, это разумно, однако при этом получается, что Адам жил в то время, когда, как показывают археологические находки, на Ближнем Востоке уже существовала хорошо развитая городская цивилизация.

Традиционное иудейско-христианское представление о сотворении мира, изложенное в Книге Бытия, вызывало и продолжает вызывать споры. Однако существующие противоречия не опровергают концепцию творения. Гипотеза творения не может быть ни доказана, ни опровергнута и будет существовать всегда вместе с научными гипотезами происхождения жизни.

Креационизм мыслится как Божье Творение. Однако в настоящее время некоторые рассматривают его и как результат деятельности высокоразвитой цивилизации, создающей различные формы жизни и наблюдающей за их развитием.

2. ТЕОРИЯ СТАЦИОНАРНОГО СОСТОЯНИЯ.

Согласно этой теории, Земля никогда не возникала, а существовала вечно; она всегда была способна поддерживать жизнь, а если и изменялась, то очень незначительно. Согласно этой версии, виды также никогда не возникали, они существовали всегда, и у каждого вида есть лишь две возможности — либо изменение численности, либо вымирание.

По современным оценкам, основанным на учете скоростей радиоактивного распада, возраст Земли исчисляется 4,6 млрд. лет. Более совершенные методы датирования дают все более высокие оценки возраста Земли, что позволяет сторонникам теории стационарного состояния полагать, что Земля существовала всегда.

Сторонники этой теории не признают, что наличие или отсутствие определенных ископаемых остатков может указывать на время появления или вымирания того или иного вида, и приводят в качестве примера представителя кистеперых рыб — латимерию (целаканта). Считалось, что кистепёрая рыба (целакант) представляет собой переходную форму от рыб к земноводным и вымерла 60-90 млн. лет назад (в конце мелового периода). Однако это заключение пришлось пересмотреть, когда в 1939 году у побережья о. Мадагаскар был выловлен 1-й живой целакант, а затем и другие экземпляры. Таким образом, целакант не является переходной формой.

Были найдены и многие другие, считавшиеся вымершими, животные, например, лингула — маленькое морское животное, якобы вымершее 500 миллионов лет назад, живо и сегодня и как другие «живые ископаемые»: солендон — землеройка, туатара — ящерица. За миллионы лет они не претерпели никаких эволюционных изменений.

Ещё один пример заблуждения это археоптерикс — существо, связующее птиц и пресмыкающихся, переходная форма на пути превращения рептилий в птиц. Но в 1977 году в штате Колорадо были обнаружены окаменелости птиц, возраст которых соизмерим и даже превышает возраст останков археоптерикса, т.е. он не является переходной формой.

Сторонники теории стационарного состояния утверждают, что только изучая ныне живущие виды и сравнивая их с ископаемыми останками, можно сделать вывод о вымирании, да и в этом случае весьма вероятно, что он окажется неверным. Используя палеонтологические данные для подтверждения теории стационарного состояния, ее сторонники интерпретируют появление ископаемых остатков в экологическом аспекте.

Так, например, внезапное появление какого-либо ископаемого вида в определенном пласте они объясняют увеличением численности его популяции или его перемещением в места, благоприятные для сохранения остатков.

Большая часть доводов в пользу этой теории связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи, и она наиболее подробно разработана именно в этом направлении.

Гипотезу стационарного состояния иногда называют гипотезой этернизма (от лат. еternus – вечный). Гипотеза этернизма была выдвинута немецким учёным В. Прейером в 1880 г.

Взгляды Прейера поддерживал академик Владимир Иванович Вернадский (1864 – 1945), автор учения о биосфере. Вернадский считал, что жизнь — такая же вечная основа космоса, которыми являются материя и энергия. «Мы знаем, и знаем это научно, — твердил он, — что Космос без материи, без энергии не может существовать. И достаточно ли материи и без выявления жизни — для построения Космоса, той Вселенной, который доступный человеческому уму?». На этот вопрос он ответил отрицательно, ссылаясь именно на научные факты, а не на личные симпатии, философские или религиозные убеждения. «. Можно говорить о вечности жизни и проявлений ее организмов, как можно твердить о вечности материального субстрата небесных тел, их тепловых, электрических, магнитных свойств и их проявлений. С этой точки зрения таким же далеким от научных поисков будет вопрос о начале жизни, как и вопрос о начале материи, теплоты, электрики, магнетизма, движения».

Исходя из представления о биосфере как о земном, но одновременно и космическом механизме, Вернадский связывал ее образование и эволюцию с организованностью Космоса. «Для нас становится понятным, — писал он, — что жизнь есть явление космическое, а не сугубо земное». Эту мысль Вернадский повторял многократно: «. начала жизни в том Космосе, который мы наблюдаем, не было, поскольку не было начала этого Космоса. Жизнь вечна, поскольку вечный Космос».

3. ТЕОРИЯ САМОПРОИЗВОЛЬНОГО ЗАРОЖДЕНИЯ.

Эта теория была распространена в Древнем Китае, Вавилоне и Египте в качестве альтернативы креационизму, с которым она сосуществовала. Религиозные учения всех времен и всех народов приписывали обычно появление жизни тому или другому творческому акту божества. Весьма наивно решали этот вопрос и первые исследователи природы. Аристотель (384 – 322 гг. до н. э.), которого часто провозглашают основателем биологии, придерживался теории спонтанного зарождения жизни. Даже для такого выдающегося ума древности, каким являлся Аристотель, принять представление о том, что животные — черви, насекомые и даже рыбы — могли возникнуть из ила, не представляло особых затруднений. Напротив, этот философ утверждал, что всякое сухое тело, становясь влажным, и, наоборот, всякое мокрое тело, становясь сухим, родят животных.

источник

Происхождение жизни на Земле является одной из важнейших проблем естествознания. Еще в глубокой древности люди задавали себе вопросы, откуда произошла живая природа, как появилась жизнь на Земле, где грань перехода от неживого к жизни и пр. На протяжении десятков веков менялись взгляды на проблему жизни, высказывались разные идеи, гипотезы и концепции. Этот вопрос волнует человечество и по настоящее время.

Некоторые идеи и гипотезы о происхождении жизни получили широкое распространение в разные периоды истории развития естествознания. В настоящее время существует пять гипотез возникновения жизни:

Креационизм – гипотеза, утверждающая, что жизнь создана сверхъестественным существом в результате акта творения, то есть Богом.

Гипотеза стационарного состояния, согласно которой жизнь существовала всегда.

Гипотеза самопроизвольного зарождения жизни, которая основывается на идее многократного возникновения жизни из неживого вещества.

Гипотеза панспермии, согласно которой жизнь была занесена на Землю из космического пространства.

Гипотеза исторического происхождения жизни путем биохимической эволюции.

Согласно креационистской гипотезе, которая имеет самую длинную историю, создание жизни есть акт божественного творения. Свидетельством этому является наличие в живых организмах особой силы, «души», управляющей всеми жизненными процессами. Гипотеза креационизма навеяна религиозными воззрениями и к науке отношения не имеет.

Согласно гипотезе стационарного состояния, жизнь никогда не возникала, а существовала вечно вместе с Землей, отличаясь большим разнообразием живого. С изменением условий жизни на Земле происходило и изменение видов: одни исчезали, другие появлялись. Эта гипотеза основывается в основном на исследованиях палеонтологии. По своей сущности эта гипотеза не относится к концепциям возникновения жизни, поскольку вопрос о происхождении жизни она принципиально не затрагивает.

Гипотеза самопроизвольного зарождения жизни была выдвинута в древнем Китае и Индии как альтернатива креационизму. Представления этой гипотезы поддерживали мыслители Древней Греции (Платон, Аристотель), а также ученые периода Нового времени (Галилей, Декарт, Ламарк). Согласно этой гипотезе, живые организмы (низшие) могут появиться путем саморождения из неживого вещества, содержащего некое «активное начало». Так, например, по Аристотелю, насекомые и лягушки при определенных условиях могут заводиться в иле, сырой почве; черви и водоросли в стоячей воде, а вот личинки мух – в протухшем мясе при его гниении.

Однако уже с начала XVII в. такое понимание происхождения жизни стало подвергаться сомнению. Ощутимый удар по этой гипотезе нанес итальянский естествоиспытатель и врач Ф. Реди (1626–1698), который в 1688 г. раскрыл сущность появления жизни в гниющем мясе. Ф. Реди сформулировал свой принцип: «Все живое – от живого» и стал основоположником концепции биогенеза, утверждавшей, что жизнь может возникнуть только из предшествующей жизни.

Французский микробиолог Л. Пастер (1822–1895) своими опытами с вирусами окончательно доказал несостоятельность идеи спонтанного самозарождения жизни. Однако, опровергнув эту гипотезу, он не предложил свою, не пролил свет на вопрос о возникновении жизни.

Тем не менее опыты Л. Пастера имели большое значение в получении богатого эмпирического материала в области микробиологии его времени.

Гипотеза панспермии – о неземном происхождении жизни путем занесения «зародышей жизни» из космоса на Землю – впервые была высказана немецким биологом и врачом Г. Рихтером в конце XIX в. Концепция панспермии (от греч. pan – весь, sperma – семя) допускает возможность происхождения жизни в разное время в разных частях Вселенной и переноса ее различными путями на Землю (метеориты, астероиды, космическая пыль).

Действительно, в настоящее время получены некоторые данные, указывающие на возможность образования органических веществ химическим путем в условиях космоса. Так, в 1975 г. предшественники аминокислот были найдены в лунном грунте. В межзвездных облаках обнаружены простейшие соединения углерода, в том числе и близкие к аминокислотам. В составе метеоритов найдены альдегиды, вода, спирты, синильная кислота и т. д.

Концепцию панспермии разделяли крупнейшие ученые конца XIX – начала XX в.: немецкий химик и агроном Ю. Либих, английский физик У. Томсон, немецкий естествоиспытатель Г. Гельмгольц, шведский физико-химик С. Аррениус. С. Аррениус в 1907 г. в своих трудах даже описывал, как с других планет в космическое пространство уходят с пылинками и живые споры организмов. Носясь в бескрайних просторах космоса под действием давления звездного света, они попадали на планеты и там, где были благоприятные условия (в том числе на Земле) начинали новую жизнь. Идеи панспермии поддерживали и некоторые русские ученые: геофизик П. Лазарев, биолог Л. Берг, биолог-почвовед С. Костычев.

Существует идея о возникновении жизни на Земле почти с момента ее образования. Как известно, Земля образовалась около 5 млрд лет назад. Значит, жизнь могла зародиться во время образования Солнечной системы, то есть в космосе. Поскольку длительность эволюции Земли и жизни на ней разнится незначительно, то существует версия, что жизнь на Земле – это продолжение вечного ее существования. Эта позиция близка к теории вечного существования жизни во Вселенной. В масштабе глобального эволюционного процесса можно полагать, что возникновение жизни на Земле может, по-видимому, совпадать с образованием и существованием материи. Академик В. Вернадский разделял идею вечности жизни не в контексте ее перераспределения в космосе, а в смысле неразрывности и взаимосвязанности материи и жизни. Он писал, что «жизнь и материя неразрывны, взаимосвязаны и между ними нет временной последовательности». На эту же мысль указывает и русский биолог и генетик Тимофеев-Ресовский (19001982). В своем кратком очерке теории эволюции (1977 г.) он остроумно заметил: «Мы все такие материалисты, что нас всех безумно волнует, как возникла жизнь. При этом нас почти не волнует, как возникла материя. Тут все просто. Материя вечна, она ведь всегда была, и ненужно никаких вопросов. Всегда была. А вот жизнь, видите ли, обязательно должна возникнуть. А может быть, она тоже была всегда. И не надо вопросов, просто всегда была, и все».

Для обоснования панспермии в научно-популярной литературе приводятся «факты» о неопознанных летающих объектах, прилете инопланетян на Землю, наскальные топологические рисунки.

Однако серьезных доказательств эта концепция не имеет, а многие доводы выступают против нее. Известно, что диапазон жизненных условий для существования живого довольно узок. Поэтому вряд ли живые организмы выжили бы в космосе под действием ультрафиолетовых лучей, рентгеновского и космического излучения. Но и не исключается возможность занесения отдельных предпосылочных факторов жизни на нашу планету из космоса. Следует отметить, что это принципиального значения не имеет, поскольку концепция панспермии в корне не решает проблемы происхождения жизни, а лишь переносит ее за пределы Земли, не раскрывая самого механизма ее образования.

Читайте также:  100 ное зрение лечение восстановление профилактика

Таким образом, ни одна из перечисленных четырех гипотез до настоящего времени не подтверждена надежными экспериментальными исследованиями.

Наиболее доказательно с точки зрения современной науки выглядит пятая гипотеза – гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции. Ее авторами являются отечественный биохимик академик А. Опарин (1923 г.) и английский физиолог С. Холдейн (1929 г.). Об этой гипотезе мы подробно будем говорить в следующем разделе.

Гипотеза происхождения жизни в историческом прошлом в результате биохимической эволюции А. И. Опарина

С точки зрения гипотезы А. Опарина, а также с позиций современной науки возникновение жизни из неживого вещества произошло в результате естественных процессов во Вселенной при длительной эволюции материи. Жизнь есть свойство материи, которое появилось на Земле в определенный момент ее истории. Это результат процессов, протекающих сначала многие миллиарды лет в масштабе Вселенной, а потом сотни миллионов лет на Земле.

А. Опарин выделил несколько этапов биохимической эволюции, конечной целью которых явилась примитивная живая клетка. Эволюция шла по схеме:

Геохимическая эволюция планеты Земля, синтез простейших соединений, таких как СО2,1 ч[Н320 и т. д., переход воды из парообразного состояния в жидкое в результате постепенного охлаждения Земли. Эволюция атмосферы и гидросферы.

Образование из неорганических соединений органических веществ – аминокислот – и их накопление в первичном океане в результате электромагнитного воздействия Солнца, космического излучения и электрических разрядов.

Постепенное усложнение органических соединений и образование белковых структур.

Выделение белковых структур из среды, образование водных комплексов и создание вокруг белков водной оболочки.

Слияние таких комплексов и образование коацерватов (от лат. coacervus– сгусток, куча, накопление), способных обмениваться веществом и энергией с окружающей средой.

Поглощение коацерватами металлов, что привело к образованию ферментов, ускоряющих биохимические процессы.

Образование гидрофобных липидных границ между коацерватами и внешней средой, что привело к образованию полупроницаемых мембран, что обеспечивало стабильность функционирования коацервата.

Выработка в ходе эволюции у этих образований процессов саморегуляции и самовоспроизведения.

Так, по гипотезе А. Опарина, появилась примитивная форма живого вещества. Такова, по его мнению, предбиологическая эволюция вещества.

Академик В. Вернадский возникновение жизни связывал с мощным скачком, прервавшим безжизненную эволюцию земной коры. Этот скачок (бифуркация) внес в эволюцию столько противоречий, что они создали условия для зарождения жизни.

источник

Подобно алхимику во время óно, Майк Рассел (Mike Russell) пытается из элементарных компонент составить нечто большее, — но не золото, а зачатки жизни. Рисунок Рассела с его экспериментальной установкой выполнен Д. Паркинсом (D. Parkins).

Вопрос происхождения жизни на Земле является настолько дискуссионным и всеобъемлющим, что заниматься им фактически обозначает взять на себя бремя непосильных обязательств и оказаться в луче общественного внимания, скорее всего скептического оттенка. Недаром на все вопросы о происхождении жизни выдающийся советский генетик Тимофеев-Ресовский говорил: «Я был тогда очень маленьким, и потому ничего не помню. Спросите-ка лучше у академика Опарина. ». Британский учёный Майк Рассел проводит эксперименты по абиогенезу с целью доказать, что первичным в зарождении жизни является метаболизм, а не репликация, и что постулированные Опариным коацерваты являлись, возможно, не «свободноплавающими» коллоидными частицами, а гидротермальными источниками океанического дна.

Вопрос происхождения жизни волнует людей уже тысячи лет, и, даже если оставаться в рамках естественнонаучной концепции и не рассматривать гипотезу «разумного творения» и более экзотические вещи, предметов для спора остаётся более чем достаточно. С одной стороны, синтетическая биология уже подбирается к тому, чтобы создавать живые организмы искусственным путём [1], а с другой — учёные, пытающиеся объяснить возникновение жизни (а не скопировать уже «готовое» существо генно-инженерным путём), разделились на два лагеря.

Одни считают, что предопределяющим фактором для появления жизни стало возникновение молекул-репликаторов, способных самостоятельно размножаться и, вследствие этого, подвергаться процессам естественного отбора. Обычно на роль таких молекул выбирают РНК (гипотеза мира РНК [2]), способную играть и информационную, и каталитическую роли. Репликаторы могут обособляться в протоклетки (или, по терминологии А. И. Опарина, коацерватные капли), и недавно для искусственных протоклеток даже показана способность к спонтанному (без участия ферментов) синтезу ДНК [3].

Другие придерживаются мнения, что сначала должен был возникнуть элементарный метаболизм, «наводящий мостки» между (не)органической химией ранних геологических эпох и биохимией живых организмов. Важным результатом, поддерживающим теорию абиогенеза, стал «классический» эксперимент С. Миллера, который продемонстрировал синтез целого ряда органических соединений из неорганики [4].

Недавно в этом направлении сделан ещё один шаг — показана возможность абиогенного синтеза пиримидиновых оснований РНК [5], ранее считавшегося неосуществимым.

В ответ на это открытие журнал Nature опубликовал эссе об исследованиях британского учёного Майка Рассела (Mike Russell) [6], экспериментирующего с более простыми, чем РНК, молекулами. Бывший геолог, Рассел считает, что жизнь зародилась не в «свободноплавающих» коацерватах, а в гидротермальных источниках океанического дна, обеспечивающих необходимые для химической эволюции условия.

«Биомолекула» публикует перевод этого эссе, который удачно дополнит материал об абиогенном синтезе РНК с «Элементов» [5]. — А. Ч.

Два взаимосвязанных алюминиевых сосуда в лаборатории Майка Рассела (Mike Russell) можно назвать биологическим аналогом ускорителя частиц. Однако предназначен этот «ускоритель» не для имитации первых моментов существования Вселенной, а для создания условий, аналогичных существовавшим на Земле в самые ранние её эпохи, — чтобы подтвердить гипотезы Майка насчёт того, как геология «породила» биологию.

Один из сосудов содержит жидкость, имитирующую океаническую воду на ранней Земле: она обогащена диоксидом углерода и железом, поддерживается при комнатной температуре и имеет показатель кислотности pH 5. В другом сосуде вода обогащена водородом и сульфидами, имеет температуру 130 °C и имитирует горячую воду геотермальных источников, исторгаемую океаническим дном. Жидкости смешиваются в хромированном стальном сосуде, содержащем в качестве катализаторов железо и сульфид никеля.

На этом аппарате Майк Рассел (изображённый на «заглавной» картинке) пытается воспроизвести первые шаги жизни на Земле, проводя химическую реакцию углекислого газа из «океанической» воды с водородом из воды «геологической», в результате чего образуются простые органические молекулы, — например, метан или уксусная кислота. Согласно его гипотезе, жизнь шаг за шагом зародилась вокруг этих реакций, а потом, подобно каравеллам флота Генриха Мореплавателя, распространилась по всему миру в первых протоклетках.

Эта реакция, выбранная на роль первой «искры жизни», обладает нужными характеристиками: она протекает с выделением энергии и фиксирует углерод — то есть, позволяет накапливаться органике, — а это два наиболее общих признака жизни. Этот процесс задействует вещества, которые, согласно всем представлениям геологии о ранней Земле, присутствовали в избытке, и, кроме того, реакция до сих пор используется — хотя, конечно, в усложнённом виде — метаногенными и ацетогенными микроорганизмами, выделяющими метан и уксусную кислоту в качестве отходов.

Рассел вынашивает свои идеи уже около трёх десятилетий, и только сейчас, работая в Лаборатории реактивного движения (ЛРД) в Пасадене (Калифорния, США), он занимается активной экспериментальной проверкой этих гипотез. Рассел принадлежит к школе биологов, изучающих возникновение жизни, которые придерживаются концепции «сперва метаболизм» (в противовес более популярной «сперва репликаторы»). Последняя гипотеза подразумевает, что у истоков жизни лежали молекулы, способные к самостоятельному «размножению» (репликации), — скорее всего, это были РНК или более простые её аналоги. Однако Рассел считает, что ключевым моментом стало возникновение набора элементарных реакций органических веществ, положивших основу биохимии. Его мнение таково, что термодинамические и химические условия на ранней Земле неизбежно должны были привести к таким реакциям.

Несмотря на это противостояние, многие биологи признают вклад Рассела как «геологически реалистичный»: «что мне больше всего нравится в идеях Майка, это что они органичным образом учитывают геохимическую обстановку на ранней Земле, — говорит Роберт Хазен (Robert Hazen), геохимик и «исследователь истоков жизни» из Института Карнеги (Вашингтон, США). — Возникновение жизни на Земле — это история возникновения сложных систем, а возникновение сложных систем не может произойти без сложного окружения. Майк понимает это и учитывает в своих моделях, — вот его основной вклад».

Изучение происхождения жизни на Земле — не самый удачный путь, чтобы начать научную карьеру, так что обычно исследователи попадают в эту область, уже заработав себе определённую репутацию в других, более «приземлённых» дисциплинах. [Исключение составляют, впрочем, академики РАЕН, астрологи, маги, экстрасенсы и другие лжеучёные, которым, как известно, любая проблема по плечу. — А. Ч.] Однако, даже по этим стандартам путь Рассела в ЛРД был весьма окольным и тернистым. После окончания школы в 1958-м он начал работать на фабрике по производству аспирина в небольшом городке Илфорде в пригороде Лондона, одновременно посещая вечерние занятия и колледж по предоставлявшимся ему выходным дням.

Через пять лет он защитил диплом по специальностям геология и химия, бросил работу на заводе и завербовался геологом в британскую миссию ООН на Соломоновы острова в Тихом океане. Уже в первую неделю пребывания начальство указало ему пальцем в окно на дымящийся конус вулкана на соседнем острове и сообщило, что тот, по всей видимости, должен вскоре взорваться. Рассел должен был принять решение об эвакуации 3000 обитателей острова, но отвлёкся на экспресс-курс вулканологии, провёл измерения температуры почвы в различных точках вокруг жерла вулкана и пришёл к решению — как [к счастью — А. Ч.] оказалось, правильному, — что тревога ложная.

Во время работы на Соломоновых островах Рассел сотрудничал с австралийским геологом Ричардом Стэнтоном (Richard Stanton) из Университета Новой Англии в Новом Южном Уэльсе, и по его совету специализировался по геологии рудных месторождений. Через какое-то время он отправился в Канаду на разработки минерального сырья, где находился до конца 1960-х, а затем перебрался в академическую науку. Стэнтон подбросил Расселу революционную тогда идею, что минеральные отложения — это наследие древнейших подводных гидротермальных источников, которые были «в реале» открыты только в 1977 году. Как оказалось, многие ценные минеральные отложения и в самом деле представляют собой остатки доисторических вулканических и гидротермальных жерл, наподобие существующих в наше время «чёрных курильщиков», которые изливают воду, нагретую до 400 °C, насыщенную солями цинка, меди, железа и других элементов.

. На тот момент Рассел работал в Университете Стратклайда (Шотландия) и был на полевых работах близ Ирландского городка Силвермайн. Он и его студенты нашли в рудных залежах камни, испещрённые маленькими трубочками сульфида железа, выглядевшими как миниатюрные версии гидротермальных «труб», образованных осаждающимися из охлаждённой воды минералами.

Рисунок 1. Минеральные месторождения, найдённые Расселом (в каске) около Силвермайна в Ирландии (справа), выглядели очень похоже на «трубы» океанических горячих источников. «Химические сады» (слева) очень помогли в подтверждении идей Рассела.

Рассел начал думать, какие же условия могли привести к образованию подобных структур. Поначалу его предположение, что они — остатки «сопел» гидротермальных источников [7], было встречено с прохладцей, — главным образом потому, что каналы чёрных курильщиков имеют около 10 сантиметров в поперечнике, в то время как диаметр найденных им в Ирландии трубок не превышал миллиметров. Как это ни странно, решение проблемы пришло со стороны одиннадцатилетнего сына Рассела — Эндрю. Рассел дал ему поиграть с «химическим садом» — сосудом, в котором минеральные «деревья» образуются из перенасыщенного солевого раствора при добавлении кристалла-«семечка». Ребёнком овладела жажда познания: он заперся в ванной и стал препарировать хрупкие кристаллические деревца. «Смотри, пап, они пустые!» — услышал вдруг Рассел.

«Я сразу понял, что трубочки, найденные в Силвермайне — по сути, химические сады наподобие этого», — говорит он. Фактически это означало, что чёрные курильщики — не единственный возможный вариант «выпускных клапанов», — их могло быть множество. Должны были существовать более холодные и тихие источники, формировавшие более тонко организованные структуры. Примерно в это же время пришла идея, что эти «клапаны» — идеальное место для «колыбели» жизни. Некоторые учёные уже высказывали предположения, что гидротермальные источники могли послужить источником энергии и химических веществ для зарождения жизни, но критика настаивала на том, что высочайшая температура чёрных курильщиков несовместима ни с какой сложной органикой. Однако те источники, о которых думал Рассел, не должны были быть сильно горячее 100 °C, что уже гораздо лучше подходит для органических реакций.

Окончательное подтверждение идея разнообразия гидротермальных источников получила во время визита в Югославию в середине 1980-х. В современных курильщиках вода обладает кислотной реакцией из-за растворённых в ней соединений серы, дающих серную кислоту. Во времена Гадея (> 4 млрд. лет назад) океан также, видимо, был кислым — из-за большого количества углекислого газа в тогдашней атмосфере, который растворялся в воде. Однако на Динарском нагорье Рассел нашёл отложения карбоната магния, которые в древние времена выстилали морское дно и могли образовывать щелочные источники [8]. Однако на тот момент никаких щелочных источников никто не наблюдал, — были известны только чёрные курильщики.

К середине 90-х Рассел и один из его коллег Алан Холл (Allan Hall) были увлечены идеей, что минеральная химия в какой-то степени повторяет биологические процессы (а точнее, наоборот). Таким образом, их теория возникновения жизни начинается внутри крошечных минеральных трубочек, в которых химические вещества могут концентрироваться, — а проблема нужной концентрации компонент является одной из ключевых в вопросе «бесклеточной» биохимии. По-видимому, когда эти источники функционировали, они представляли собой не твёрдые минералы, а гель, формирующий полупроницаемую мембрану, сравнимую с биологической. (Содержащиеся в этой мембране сульфиды железа и никеля выполняют также каталитическую роль.) И, самое интересное, такой гель удалось успешно воспроизвести в лаборатории [9].

На мембранах должны были образовываться градиенты концентраций веществ. В каналах источников вода была горячей, щелочной и богатой водородом — из-за реакций воды с минералами земной коры (серпентинизация); в окружающем океане — холодной и кислой. Большинство клеток современных организмов тратят основной объём биохимической энергии на поддержание подобных градиентов, однако в них для этого используется масса специализированных белковых молекул. Мнение Рассела таково, что белки являются уже вторичной адаптацией, и что жизнь начала использовать химические градиенты намного раньше, чем научилась сама их создавать и поддерживать. Говоря о протонном градиенте, ускорявшем, например, синтез метана из водорода и углекислого газа, Рассел проводит аналогию с конвекцией в геологии, ускоряющей вынос тепла из глубинных слоёв Земли к её поверхности: «Метаболизм в геохимии — это как конвекция в геофизике».

Сначала Рассел полагал, что ключевой реакцией в становлении жизни были окислительно-восстановительные процессы с участием железа и водорода (в которых железо восстанавливалось, а водород окислялся). Однако в 1998-м ему на глаза попалась статья по эндосимбиозу, в которой выдвигали предположение, что эукариоты возникли в результате поглощения нуждающимися в водороде древнейшими клетками бактерий, водород вырабатывающих [10].

Читайте также:  100 процентное зрение без очков и линз за 7 минут в день

Впечатлённый, Рассел поделился своими идеями с одним из авторов, — Вильямом Мартином (William Martin) из Университета им. Гейне в Дюссельдорфе (Германия). Мартин, в свою очередь, впечатлился. Однако он увидел в теории Рассела изъян — если бы жизнь начиналась с реакций железа, то именно они (а не углеродный метаболизм) должны были бы наблюдаться и в современных организмах, даже следов чего никто нигде не видел. «Разумно ли предположение, что присутствовавшее во всех первичных клетках потом разом пропало?» — удивился он.

Он порекомендовал Расселу переключиться с неведомой гипотетической реакции на так называемый путь Вуда-Льюнгдала (Wood-Ljunghahl pathway), известного также как восстановительный путь ацетил-коэнзима А (КоА), встречающийся в метаногенных и ацетогенных бактериях. Таким образом, первичная роль аминокислот и нуклеиновых кислот, возникших на ранней Земле, сводится, по Расселу и Мартину, к катализу реакций углекислого газа и водорода [11].

В мире типа «сперва метаболизм», прежде чем генетические молекулы стали определять направление эволюции, отбор должен был направлять движение не в сторону лучшего репликатора, а в сторону химических реакций, наиболее эффективно создающих энергетический обмен, не позволяя энергии рассеиваться в побочных направлениях и формируя так называемую химическую эволюцию.

Что теперь необходимо, чтобы сделать возможным выбор из множества гипотез, — это «создать и продемонстрировать работу самоподдерживающихся химических циклов наподобие упомянутых», — говорит Роберт Шапиро (Robert Shapiro), химик из Университета Нью-Йорка. И, благодаря астробиологический программе НАСА, финансирующей работы по изучению возникновения жизни в ЛРД, Рассел теперь пытается это сделать.

В 2000-м году был открыт новый тип гидротермальных источников, предсказанный Расселом — с щелочной реакцией и не слишком горячих (около 200 °C) [12]. Гидротермальные поля, получившие название «Затерянный Город», находятся в Атлантическом океане, в 15 километрах от серединного хребта. При выносе горячих минерализованных струй в холодные вóды океана, карбонат кальция выпадает в осадок подобно снегу, образуя 60-метровые башни, похожие колоссальный «химический сад». В прошлом году в этих источниках найдена органика абиотического происхождения, включая метан [13].

Рисунок 2. Известковые образования на гидротермальных полях Затерянного Города в Атлантическом океане имели поначалу очень тонкую структуру (на врезке)

Рассел считает, что в его реакторе могут образовываться аминокислоты и пептиды, но сначала он поставил себе задачей выяснить, будут ли минеральные сульфиты, образующие океаническую кору, растворяться в щелочных гидротермальных потоках. Это стало бы отправной точкой к формированию железосульфидных трубок, являвшихся, по его мнению, прибежищем для первых метаболических систем.

Эрик Смит (Eric Smith), занимающийся теоретической физикой и вопросами происхождения жизни в Институте Санта-Фе (Нью-Мексико, США), считает, что концепция «сперва метаболизм» уверенно прокладывает себе дорогу — особенно в свете открытий, связанных с гидротермальными источниками. Он считает, что дело теперь стоит за экспериментом, и его коллеги работают над тем, чтобы воспроизвести в лабораторном подобии гидротермального источника реакции обратного цикла Кребса, являющегося источником углерода для многих бактерий.

Однако многие до сих пор не доверяют всей идеологии «сперва метаболизм». Стивен Бреннер (Steven Brenner) из Фонда молекулярной прикладной эволюции видит в этой идее принципиальные изъяны — в частности, в неконтролируемости многих органических реакций: «Органическая химия имеет неискоренимую особенность — превращать всё в комок смолы. Это высадит молекулу из любого цикла». Согласно его мнению, никакой набор реакций не способен эволюционировать в сторону усложнения организации в дарвиновском смысле; скорее всего это приведёт к рассеиванию химического потенциала. И, кроме того, — продолжает он свою аргументацию, — Ac-КоА не выдержит в течение длительного времени тех щелочности и температуры, которые предлагают Рассел и Мартин.

Рисунок 3. Вильям Мартин считает, что исследования по происхождению жизни — это «нефальсифицируемые гипотезы». [Что, по сути, ставит эти изыскания на грань научности. — А.Ч.]

Бреннер относит себя к другой школе, основным постулатом которой является первичность молекул-репликаторов над биохимическими системами. Он провёл многие эксперименты по абиогенному синтезу РНК, хотя и осознаёт маловероятность самопроизвольной сборки молекулы РНК, достаточно большой, чтобы обладать генетическими и ферментативными функциями. Однако недавно лагерь «РНК-шников» отметил крупную победу: в Nature доложено о новых возможностях абиогенного синтеза РНК, уменьшающих скепсис по этому поводу [14]. [См. также: «Химики преодолели главное препятствие на пути к абиогенному синтезу РНК» [5] — А. Ч.]

Из всего этого следует, что на настоящий момент проблема происхождения жизни не решена. Мартин считает, что исследования в этой области являются источником нефальсифицируемых гипотез, и теоретический максимум того, что можно получить, — это только убедительные предположения. «Даже если вы построите в лаборатории реактор, с одного конца в который подаются водород, оксид углерода и азот, а с другого будут получаться готовые кишечные палочки E. coli, это ещё совершенно не будет доказательством, что жизнь произошла именно этим путём», — заявляет он.

Рассел считает, что, если в эго экспериментах появится хоть что-то в промежутке между «смолой» и бактерией E. coli, то их уже можно будет считать не напрасными. «В оправдание» он цитирует Томаса Эдисона, который говорил, что он не создавал 1000 прототипов неработающих электрических ламп, но он нашёл 1000 причин, почему эти лампы не работали. Так и Рассел надеется продвинуть всю область вперёд хотя бы ценой своих ошибок и заблуждений насчёт тех тёплых геотермальных источников, что существовали на Земле более четырёх миллиардов лет назад.

Рисунок 4. Майк Рассел пытается в лаборатории воссоздать условия, приведшие к возникновению жизни

источник

С помощью этого видеоурока пользователи смогут самостоятельно рассмотреть тему «Современная теория возникновения жизни на Земле». На этом занятии вы коснетесь одного из самых интересных вопросов биологии. Учитель расскажет о современной теории возникновении жизни на Земле и условиях, которые царили на нашей планете в те далекие времена.

Исследователи, пытающиеся понять тайны возникновения жизни на Земле, до сих пор спорят, что послужило импульсом к образованию первых живых организмов: молнии, действие приливов и отливов, осадки или что-либо другое. Недавнее открытие ученых-химиков склонило чашу весов в пользу еще одной версии. Исследователи Технологического института Джорджии обнаружили, что несколько РНК-подобных молекул могут спонтанно собираться в длинные геномные цепи в обыкновенной воде. И все же тайна возникновения жизни еще ищет своего первооткрывателя. Как знать, может быть, знания, полученные на этом уроке, приблизят именно вас к ее разгадке.

Рис. 1
В 1924 году советский биохимик Александр Иванович Опарин (см. Рис. 1) выпустил книгу под названием «Происхождение жизни». Эта книга в буквальном смысле всколыхнула научный мир того времени. Согласно гипотезе Опарина, жизнь зародилась в результате ряда химических превращений, которые протекали на протяжении длительного времени в специфических условиях молодой планеты.

Согласно современным научным данным, Земля образовалась 6 млрд лет тому назад из газопылевого облака, состоящего из скоплений газа и замерших пылевых частиц, образованных разными химическими элементами (см. Рис. 2, 3). Постепенно это облако уплощалось и разогревалось, в нем сформировались Солнце и первичные планеты. Затем при остывании небесных тел определялись их структуры. Так у Земли появились ядро, мантия, кора и первичная атмосфера.

В первичной атмосфере присутствовали водород, водяной пар, а также углекислый газ, метан и аммиак. Благодаря конденсации водяных паров сформировались воды первичного Мирового океана.

По мнению Опарина, с помощью энергии ультрафиолета, а также электрической энергии разрядов молнии в бескислородных условиях молодой Земли мог начаться синтез органических веществ из неорганических, то есть химическая эволюция.

В 1953 году американские ученые Стенли Миллер и Гарольд Юри (см. Рис. 4) сконструировали установку, в которой они достаточно точно воспроизвели условия древней Земли, ее атмосферы и Мирового океана.

В специальной колбе через смесь газов метана, аммиака, водорода и паров воды при температуре 80°С пропускали электрический разряд, имитирующий разряд молнии. Через неделю в конденсате, образовавшемся в результате охлаждения содержимого колбы, были обнаружены простые органические соединения: молочная кислота, мочевина и некоторые аминокислоты. Так было получено экспериментальное подтверждение гипотезы Опарина (см. Рис. 5).

Согласно этой гипотезе, первым шагом на пути химической эволюции стал абиогенный синтез органических веществ из неорганических. Второй шаг – образование сложных органических веществ из более простых – по мнению Опарина, мог происходить путем коацервации, то есть самопроизвольного разделения белкового раствора на отдельные капли. Примерно так, как это происходит в бульоне, когда выделяются отдельные капельки жира (Источник).

Рис. 6
Были и другие точки зрения. Например, британский ученый Джон Холдейн (см. Рис. 6) предполагал, что образование сложных органических веществ из более простых может происходить путем кристаллизации белковых молекул на каком-то минеральном субстрате.

Были и другие гипотезы, но все они сходились в главном, предлагая лишь различия в путях, которыми первичные живые организмы могли образоваться на нашей планете.

Третьим шагом на пути химической эволюции было образование биополимеров мембранных структур. Возможно, это происходило следующим образом: органические соединения, которые синтезировались абиогенным путем, растворялись в водах Мирового океана, образуя так называемый «органический бульон», в то время как нерастворимые белки и углеводы образовывали на поверхности Мирового океана своеобразную пленку. Воды Мирового океана находятся в постоянном движении. А значит, возможно, в результате постоянного перемещения этих пленок образовывались складки и пузырьки. Благодаря порывам ветра такие пузырьки могли отрываться от поверхности и слегка подниматься вверх. А затем, снова падая на поверхность Мирового океана, они покрывались уже вторым слоем мембраны. Возможно, именно так образовались первые мембранные организмы. В течение миллионов лет, мембраны усовершенствовались, что привело в конечном итоге к возникновению предшественников живых организмов, так называемых протобионтов. Протобионты, по мнению Опарина, отличались от настоящих клеточных организмов тем, что в них еще не происходили сложные процессы обмена веществ и передачи генетической информации (см. Рис. 7).

Этапы развития жизни на Земле согласно гипотезе Опарина-Холдейна

Переход от протобионотов к настоящим клеточным организмам, случившийся около 3,5 млрд лет назад, ознаменовал начало биологической эволюции (Источник).

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. – М.: Дрофа, 2009.
  2. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию. Учебник для 9 кл. 3-е изд., стереотип. – М.: Дрофа, 2002.
  3. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 кл. общеобразовательных учреждений / Под ред. проф. И.Н. Пономаревой. – 2-е изд., перераб. – М.: Вентана-Граф, 2005.

Домашнее задание

  1. Какие органические вещества необходимы для формирования протобионтов?
  2. Что изучает и на какие вопросы отвечает палеонтология?
  3. Могла ли возникнуть жизнь на других планетах?
  4. Что доказывают опыты С. Миллера и Г. Юри?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

источник

Жизнь на Земле появилась более 3,5 млрд лет назад – точнее обозначить момент трудно хотя бы потому, что нелегко провести грань между «почти живым» и «живым по-настоящему». Однако можно сказать точно, что этот волшебный момент растянулся на многие, длинные миллионы лет. И все равно это было настоящее чудо.

Чтобы оценить это чудо по достоинству, надо познакомиться с рядом современных теорий, описывающих разные варианты и этапы рождения жизни. От бойкого, но безжизненного набора несложных органических соединений и до протоорганизмов, познавших смерть и вступивших в бесконечную гонку биологической изменчивости. В конце концов, не эти ли два слагаемых – изменчивость и смерть – порождают всю сумму жизни.

Гипотеза о занесении жизни на Землю с других космических тел имеет массу авторитетных защитников. На этой позиции стоял великий немецкий ученый Герман Гельмгольц и шведский химик Сванте Аррениус, российский мыслитель Владимир Вернадский и британский лорд-физик Кельвин. Однако наука – область фактов, и после открытия космической радиации и ее губительного действия на все живое панспермия, казалось, умерла.

Но чем глубже ученые погружаются в вопрос, тем больше всплывает нюансов. Так, теперь – в том числе и поставив многочисленные эксперименты на космических аппаратах – мы с куда большей серьезностью относимся к способностям живых организмов переносить радиацию и холод, отсутствие воды и прочие «прелести» пребывания в открытом космосе. Находки всевозможных органических соединений на астероидах и кометах, в далеких газопылевых скоплениях и протопланетных облаках многочисленны и не вызывают сомнений. А вот заявления об обнаружении в них следов чего-то подозрительно напоминающего микробы остаются недоказанными.

Легко заметить, что при всей своей увлекательности теория панспермии лишь переносит вопрос о возникновении жизни в другое место и другое время. Что бы ни занесло первые организмы на Землю – случайный ли метеорит или хитрый план высокоразвитых инопланетян, они должны были где-то и как-то родиться. Пусть не здесь и гораздо дальше в прошлом – но жизнь должна была вырасти из безжизненной материи. Вопрос «Как?» остается.

Спонтанное происхождение высокоразвитой живой материи из неживой – как зарождение личинок мух в гниющем мясе – можно связать еще с Аристотелем, который обобщил мысли множества предшественников и сформировал целостную доктрину о самозарождении. Как и прочие элементы философии Аристотеля, самозарождение было доминирующей доктриной в Средневековой Европе и пользовалось определенной поддержкой вплоть до экспериментов Луи Пастера, который окончательно показал, что для появления даже личинок мух нужны мухи-родители. Не стоит путать самозарождение с современными теориями абиогенного возникновения жизни: разница между ними принципиальная.

Читайте также:  100 процентное зрение до какой строки

Это понятие тесно связано с успевшими обрести статус классических экспериментами, поставленными в 1950-х Стэнли Миллером и Гарольдом Юри. В лаборатории ученые смоделировали условия, которые могли существовать у поверхности молодой Земли, – смесь метана, угарного газа и молекулярного водорода, многочисленные электрические разряды, ультрафиолет, – и вскоре более 10% углерода из метана перешло в форму тех или иных органических молекул. В опытах Миллера – Юри было получено больше 20 аминокислот, сахара, липиды и предшественники нуклеиновых кислот.

Современные вариации этих классических экспериментов используют куда более сложные постановки, которые точнее соответствуют условиям ранней Земли. Имитируются воздействия вулканов с их выбросами сероводорода и двуокиси серы, присутствие азота и т. д. Так ученым удается получать огромное и разнообразное количество органики – потенциальных кирпичиков потенциальной жизни. Главной проблемой этих опытов остается рацемат: изомеры оптически активных молекул (таких как аминокислоты) образуются в смеси в равных количествах, тогда как вся известная нам жизнь (за единичными и странными исключениями) включает лишь L-изомеры.

Впрочем, к этой проблеме мы еще вернемся. Здесь же стоит добавить, что недавно – в 2015 году – кембриджский профессор Джон Сазерленд (John Sutherland) со своей командой показал возможность образования всех базовых «молекул жизни», компонентов ДНК, РНК и белков из весьма нехитрого набора исходных компонентов. Главные герои этой смеси – циановодород и сероводород, не столь уж редко встречающиеся в космосе. К ним остается добавить некоторые минеральные вещества и металлы, в достаточном количестве имеющиеся на Земле, – такие как фосфаты, соли меди и железа. Ученые построили детальную схему реакций, которая вполне могла создать насыщенный «первичный бульон» для того, чтобы в нем появились полимеры и в игру вступила полноценная химическая эволюция.

Гипотезу абиогенного происхождения жизни из «органического бульона», которую проверили эксперименты Миллера и Юри, выдвинул в 1924 году советский биохимик Александр Опарин. И хотя в «темные годы» расцвета лысенковщины ученый принял сторону противников научной генетики, заслуги его велики. В знак признания роли академика имя его носит главная награда, вручаемая Международным научным обществом изучения возникновения жизни (ISSOL), – Медаль Опарина. Премия присуждается каждые шесть лет, и в разное время ее удостаивались и Стэнли Миллер, и великий исследователь хромосом, Нобелевский лауреат Джек Шостак. Признавая громадный вклад и Гарольда Юри, в промежутках между вручениями Медали Опарина ISSOL (тоже каждые шесть лет) присуждает Медаль Юри. Получилась уникальная, настоящая эволюционная премия – с изменчивым названием.

Теория пытается описать превращение сравнительно простых органических веществ в довольно сложные химические системы, предшественницы собственно жизни, под влиянием внешних факторов, механизмов селекции и самоорганизации. Базовой концепцией этого подхода служит «водно-углеродный шовинизм», представляющий эти два компонента (воду и углерод – NS) в качестве абсолютно необходимых и ключевых для появления и развития жизни, будь то на Земле или где-то за ее пределами. А главной проблемой остаются условия, при которых «водно-углеродный шовинизм» может развиться в весьма изощренные химические комплексы, способные – прежде всего – к саморепликации.

По одной из гипотез, первичная организация молекул могла происходить в микропорах глинистых минералов, которые выполняли структурную роль. Эту идею несколько лет назад выдвинул шотландский химик Александер Кейрнс-Смит (Alexander Graham Cairns-Smith). На их внутренней поверхности, как на матрице, могли оседать и полимеризоваться сложные биомолекулы: израильские ученые показали, что такие условия позволяют выращивать достаточно длинные белковые цепочки. Здесь же могли скапливаться нужные количества солей металлов, играющих важную роль катализаторов химических реакций. Глиняные стенки могли выполнять функции клеточных мембран, разделяя «внутреннее» пространство, в котором протекают все более сложные химические реакции, и отделяя его от внешнего хаоса.

«Матрицами» для роста полимерных молекул могли служить поверхности кристаллических минералов: пространственная структура их кристаллической решетки способна вести отбор лишь оптических изомеров одного типа – например, L-аминокислот, – решая проблему, о которой мы говорили выше. Энергию для первичного «обмена веществ» могли поставлять неорганические реакции – такие как восстановление минерала пирита (FeS2) водородом (до сульфида железа и сероводорода). В этом случае для появления сложных биомолекул не требуется ни молний, ни ультрафиолета, как в экспериментах Миллера – Юри.

А значит, мы можем избавиться от вредных аспектов их действия. Молодая Земля не была защищена от вредных – и даже смертельно опасных – компонентов солнечного излучения. Даже современные, испытанные эволюцией организмы были бы неспособны выдержать этого жесткого ультрафиолета – притом что само Солнце было значительно моложе и не давало достаточно тепла планете. Из этого возникла гипотеза о том, что в эпоху, когда творилось чудо зарождения жизни, вся Земля могла быть покрыта толстым – в сотни метров – слоем льда; и это к лучшему.

Скрываясь под этим ледяным щитом, жизнь могла чувствовать себя вполне в безопасности и от ультрафиолета, и от частых метеоритных ударов, грозивших погубить ее еще в зародыше. Относительно прохладная среда могла также стабилизировать структуру первых макромолекул.

В самом деле, ультрафиолетовое излучение на молодой Земле, атмосфера которой еще не содержала кислорода и не имела такой замечательной штуки, как озоновый слой, должно было быть убийственным для любой зарождающейся жизни. Из этого выросло предположение о том, что хрупкие предки живых организмов были вынуждены существовать где-то, скрываясь от непрерывного потока стерилизующих все и вся лучей. Например, глубоко под водой – конечно, там, где имеется достаточно минеральных веществ, перемешивания, тепла и энергии для химических реакций. И такие места нашлись.

Ближе к концу ХХ века стало ясно, что океанское дно никак не может быть пристанищем средневековых монстров: условия здесь слишком тяжелые, температура невелика, излучения нет, а редкая органика способна разве что оседать с поверхности. Фактически это обширнейшие полупустыни – за некоторыми примечательными исключениями: тут же, глубоко под водой, поблизости от выходов геотермальных источников, жизнь буквально бьет ключом. Насыщенная сульфидами черная вода горяча, активно перемешивается и содержит массу минералов.

Черные курильщики океана – весьма богатые и самобытные экосистемы: питающиеся на них бактерии используют железосерные реакции, о которых мы уже говорили. Они являются основой для вполне цветущей жизни, включая массу уникальных червей и креветок. Возможно, они были основой и зарождения жизни на планете: по крайней мере, теоретически такие системы несут в себе все необходимое для этого.

Любые космологические мифы о происхождении мира всегда венчаются антропогоническими – о происхождении человека. И в этих фантазиях можно лишь позавидовать воображению древних авторов: по вопросу о том, из чего, как и почему возник космос, откуда и каким образом появилась жизнь – и люди, – версии звучали самые разные и почти всегда красивые. Растения, рыбы и звери вылавливались с морского дна громадным вороном, люди выползали червями из тела первопредка Паньгу, лепились из глины и пепла, рождались от браков богов и чудовищ. Все это удивительно поэтично, но к науке, конечно, не имеет никакого отношения.

В соответствии с принципами диалектического материализма жизнь – это «единство и борьба» двух начал: изменяющейся и передающейся по наследству информации, с одной стороны, и биохимических, структурных функций – с другой. Одно без другого невозможно – и вопрос о том, с чего жизнь началась, с информации и нуклеиновых кислот или с функций и белков, остается одним из самых сложных. А одним из известных решений этой парадоксальной задачи является гипотеза «мира РНК», появившаяся еще в конце 1960-х и окончательно оформившаяся в конце 1980-х.

РНК – макромолекулы, в хранении и передаче информации не столь эффективные, как ДНК, а в выполнении ферментативных функций – не столь впечатляющие, как белки. Зато молекулы РНК способны и на то, и на другое, и до сих пор они служат передаточным звеном в информационном обмене клетки, и катализируют целый ряд реакций в ней. Белки неспособны реплицироваться без информации ДНК, а ДНК неспособна на это без белковых «умений». РНК же может быть полностью автономной: она способна катализировать собственное «размножение» – и для начала этого достаточно.

Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Взять хотя бы наглядный пример, продемонстрированный калифорнийскими биофизиками во главе с Лесли Оргелом (Lesley Orgel): если в раствор способной к саморепликации РНК добавить бромистый этидий, служащий для этой системы ядом, блокирующим синтез РНК, то понемногу, со сменой поколений макромолекул, в смеси появляются РНК, устойчивые даже к очень высоким концентрациям токсина. Примерно так, эволюционируя, первые молекулы РНК могли найти способ синтезировать первые инструменты-белки, а затем – в комплексе с ними – «открыть» для себя и двойную спираль ДНК, идеальный носитель наследственной информации.

Не более научными, нежели истории о первопредках, можно назвать и взгляды, носящие громкое имя Теории стационарного состояния. По мнению ее сторонников, никакая жизнь вовсе никогда не возникала – как не рождалась и Земля, не появлялся и космос: они просто были всегда, всегда и пребудут. Все это не более обосновано, нежели черви Паньгу: чтобы всерьез принять такую «теорию», придется забыть о бесчисленных находках палеонтологии, геологии и астрономии. А по сути, отказаться от всего грандиозного здания современной науки – но тогда, наверное, стоит отказаться и от всего того, что полагается его жителям, включая компьютеры и безболезненное лечение зубов.

Однако простой репликации для «нормальной жизни» недостаточно: любая жизнь – это, прежде всего, пространственно изолированный участок среды, разделяющий процессы обмена, облегчающий течение одних реакций и позволяющий исключать другие. Иначе говоря, жизнь – это клетка, ограниченная полупроницаемой мембраной, состоящей из липидов. И «протоклетки» должны были появляться уже на самых ранних этапах существования жизни на Земле – первую гипотезу об их происхождении высказал хорошо знакомый нам Александр Опарин. В его представлении «протомембранами» могли служить капельки гидрофобных липидов, напоминающие желтые капли масла, плавающего в воде.

В целом идеи ученого принимаются и современной наукой, занимался этой темой и Джек Шостак, получивший за свои работы Медаль Опарина. Вместе с Катаржиной Адамалой (Katarzyna Adamala) он сумел создать своего рода модель «протоклетки», аналог мембраны которой состоял не из современных липидов, а из еще более простых органических молекул, жирных кислот, которые вполне могли накапливаться в местах возникновения первых протоорганизмов. Шостаку и Адамале удалось даже «оживить» свои структуры, добавив в среду ионы магния (стимулирующие работу РНК-полимераз) и лимонную кислоту (стабилизирующую структуру жировых мембран).

В итоге у них получилась совершенно простая, но в чем-то живая система; во всяком случае это была нормальная протоклетка, которая содержала защищенную мембраной среду для размножения РНК. С этого момента можно закрыть последнюю главу предыстории жизни – и начать первые главы ее истории. Впрочем, это уже совсем другая тема, так что мы расскажем лишь об одной, но чрезвычайно важной концепции, связанной с первыми шагами эволюции жизни и возникновением громадного разно­образия организмов.

«Фирменное» представление индийской философии, в западной философии связанное с трудами Иммануила Канта, Фридриха Ницше и Мирчи Элиаде. Поэтическая картина вечного странствия каждой живой души по бесконечному множеству миров и их обитателей, ее перерождения то в ничтожное насекомое, то в возвышенного поэта, а то и в существо, неизвестное нам, демона или бога.

Несмотря на отсутствие идей реинкарнации, Ницше эта идея действительно близка: вечность вечна, а значит, любое событие в ней может – и должно повториться вновь. И каждое существо без конца вращается на этой карусели всеобщего возвращения, так что только голова кружится, а сама проблема первичного происхождения исчезает где-то в калейдоскопе бесчисленных повторений.

Взгляните на себя в зеркало, всмотритесь в глаза: существо, с которым вы переглядываетесь, это сложнейший гибрид, возникший в незапамятные времена. Еще в конце XIX века немецко-английский естествоиспытатель Андреас Шимпер (Andreas Schimper) заметил, что хлоропласты – органеллы растительной клетки, ответственные за фотосинтез, – реплицируются отдельно от самой клетки. Вскоре появилась гипотеза о том, что хлоропласты – это симбионты, клетки фотосинтезирующих бактерий, когда-то проглоченные хозяином – и оставшиеся жить здесь навсегда.

Разумеется, хлоропластов у нас нет, иначе бы мы могли питаться солнечным светом, как предлагают некоторые псевдорелигиозные секты. Однако в 1920-е гипотеза эндосимбиоза была расширена, включив митохондрии – органеллы, которые потребляют кислород и поставляют энергию всем нашим клеткам. К сегодняшнему дню эта гипотеза приобрела статус полновесной, многократно доказанной теории – достаточно сказать, что у митохондрий и пластид обнаружился собственный геном, более или менее независимые от клетки механизмы деления и собственные системы синтеза белка.

В природе обнаружены и другие эндосимбионты, не имеющие за плечами миллиардов лет совместной эволюции и находящиеся на менее глубоком уровне интеграции в клетке. Например, у некоторых амеб нет собственных митохондрий, зато есть включенные внутрь и выполняющие их роль бактерии. Есть гипотезы и об эндосимбиотическом происхождении других органелл – включая жгутики и реснички, и даже клеточное ядро: согласно мнению некоторых исследователей, все мы, эукариоты, стали результатом небывалого слияния между бактериями и археями. Эти версии пока не находят строгого подтверждения, однако ясно одно: едва возникнув, жизнь стала поглощать соседей – и взаимодействовать с ними, рождая новую жизнь.

Само понятие креационизма возникло в XIX веке, когда этим словом стали называться сторонники различных версий появления мира и жизни, предложенных авторами Торы, Библии и других священных книг монотеистических религий. Однако по сути ничего нового в сравнении с этими книгами креационисты не предложили, раз за разом пытаясь опровергнуть строгие и основательные находки науки – а на самом деле раз за разом теряя одну позицию за другой. К сожалению, идеи современных псевдоученых-креационистов куда легче понять: на осознание теорий настоящей науки требуется-таки потратить немало усилий.

источник