Меню Рубрики

Все о зрении человека по физике

Глаз — орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры 1 называется роговицей. Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2, которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие — зрачок 3. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.

За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу, — хрусталик 4. Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6, представляющее собой бесцветную студенистую массу. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой (сетчаткой) 7. Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов?

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым, кто это доказал, построив ход лучей в оптической системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596—1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757—1827) очень верно подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.

Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения — наблюдаемый предмет нам кажется не таким, каков он есть на самом деле (рис. 96).

Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?

Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.

Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio — приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика — на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Какое преимущество дает зрение двумя глазами?

Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.

Во-вторых, благодаря наличию двух глаз увеличивается поле зрения. Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга. Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866—1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду — среду, обладающую примерно той же оптической плотностью, что и стекло.

В 1911 г. немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью Препарат стал невидимым.

Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.

Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет, ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.

Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

. 1. Как устроен глаз человека? Какие его части образуют оптическую систему? 2. Охарактеризуйте изображение, возникающее на сетчатке глаза. 3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми? 4. Почему, переводя взгляде близкого предмета на удаленный, мы продолжаем видеть его четкий образ? 5. Чему равно расстояние наилучшего зрения? 6. Какое преимущество дает зрение двумя глазами? 7. Почему человек-невидимка должен быть слепым?

источник

Сохранить хорошее зрение в информационную эпоху – задача непростая. В современном мире вряд ли найдется много людей, жизнь и работа которых не связана с компьютерными технологиями. Компьютеры, при всем их удобстве и необходимости, способствуют тому, что кабинеты офтальмологов переполнены пациентами со схожими симптомами: сухость и жжение в глазах, жалобы на двоение изображения, снижение остроты зрения и т.д. Поэтому я решил исследовать этот вопрос.

Любители поваляться на диване ведут гораздо активнее жизнь, чем нам кажется.

Они на самом деле тренируют один из самых активных мышц нашего организма.

1.Шесть мышц, прикреплённых к внешней поверхности глазного яблока, позволяют ему поворачиваться во всех направлениях. Эти мышцы должны координировать движения глаз так, чтобы они оба смотрели одновременно в одном направлении.

2.Круговая и радиальная мышца охватывают зрачок, определяя количество света, падающего на сетчатку. Круговая мышца сужает, а радиальная расширяет зрачок.

3.Цилиарная мышца (специальная мышца в реснитчатом теле) прикрепляется к хрусталику при помощи отростка. При её сокращении или расслаблении изменяется форма хрусталика, а с ней и фокус (чтобы на сетчатку наших глаз всегда падало чёткое изображение предметов).

Что происходит с глазами, когда мы спим?

Во время сна мышцы расслабляются и глаза закатываются вверх – это называется » Феноменом Белла «. Естественно, во время сна с быстрым движением глаз они бегают из стороны в стороны.

Почему после удара головой из глаз сыплются искры? Возможно, феномен искры из глаз, нарушение зрения, возникающее в результате внезапного ускорения или замедления глазного яблока.

При внезапном приложении силы к стекловидному телу оно давит на сетчатку, заставляя её слегка морщиться. Подобная механическая деформация не воспринимает как боль, так как в этой области нет болевых рецепторов. Однако происходит изменение электрического заряда или электрической активности зрительных рецепторов – клеток, которых находятся в сетчатке и воспринимают свет, поступающий из внешней среды.

Цель работы: узнать какие причины и факторы способствуют ухудшению зрения и можно ли сохранить или приостановить ухудшение зрения.

Объектом исследований: учащиеся ИвПК 3 Ф.

Задачи исследования:

1) познакомиться с литературными источниками;

3) провести сравнительный анализ.

Методы исследования:

1.Теоретические методы: знакомство с литературными источниками, анализ литературных источников; моделирование.

2.Эмпирические методы: проводились наблюдения за учащимися, анкетирование, сравнение.

3. Математические методы: таблицы, графики, диаграммы.

Глава 1. Обзор литературы

1.1.Строение глаз

Глазное яблоко представляет собой сферу диаметром около 25 мм, состоящую из трёх оболочек. Наружная, фиброзная оболочка, состоит из непрозрачной склеры толщиной около 1мм, которая спереди переходит в роговицу.

Снаружи склера покрыта тонкой прозрачной слизистой оболочкой — конъюнктивой. Средняя оболочка называется сосудистой. Из её названия понятно, что она содержит массу сосудов, питающих глазное яблоко. Она образует, в частности, цилиарное тело и радужку. Внутренней оболочкой глаза является сетчатка. Глаз имеет также придаточный аппарат, в частности, веки и слёзные органы. Движениями глаз управляют шесть мышц — четыре прямые и две косые.По своему строению и функциям глаз можно сравнить с оптической системой, например, фотоаппарата. Изображение на сетчатке (аналог фотоплёнки) образуется в результате преломления световых лучей в системе линз, находящихся в глазу (роговица и хрусталик) (аналог объектива). Рассмотрим, как это происходит подробнее.

Свет, попадая в глаз, сначала проходит через роговицу — прозрачную линзу, имеющую куполообразную форму. Выйдя из роговицы, свет попадает в заполненную жидкостью так называемую переднюю камеру глаза — пространство между внутренней поверхностью роговицы и радужкой.

1.2. Цвет глаз

Цвет глаз — характеристика, определяемая пигментацией радужной оболочки.Радужная оболочка состоит из переднего — мезодермального, и заднего — эктодермального слоёв. Передний слой состоит из наружного пограничного отдела истромы. В нём распределены хроматофоры, содержащие меланин. От характера распределения пигментов в этом слое и зависит цвет глаза. В заднем слое содержится много заполненных фусцином пигментных клеток. Независимо от цвета глаз, задний слой имеет тёмный цвет, исключение составляют только альбиносы. Кроме этого, роль играют сосуды и волокна радужной оболочки.

Синий цвет получается в связи с малой плотностью волокон внешнего слоя радужки и малым содержанием меланина. В этом случае низкочастотный свет поглощается задним слоем, а высокочастотный отражается от него, поэтому глаза получаются синие. Чем меньше плотность волокон внешнего слоя, тем насыщеннее синий цвет глаз.

Голубой цвет получается, если волокна внешнего слоя радужки более плотные, чем в случае с синими глазами, и имеют белесый или сероватый цвет. Чем больше плотность волокон, тем светлее цвет.

Голубые и синие глаза наиболее распространены среди населения северной Европы. К примеру, в Эстонии такой цвет глаз имели до 99 % населения, а в Германии 75 %. Только учитывая современные реалии, данный расклад сохранится недолго, ведь в Европу стремятся переехать все больше и больше жителей из азиатских и африканских стран. Существует мнение, будто все дети рождаются голубоглазыми, а потом цвет меняется. Это неверное мнение. На самом деле многие младенцы действительно рождаются светлоглазыми, а впоследствии по мере активной выработки меланина их глаза становятся темнее и окончательный цвет глаз устанавливается к двум-трем годам.

3)Серый глаз (стальной оттенок)

Получается подобно голубому, только при этом плотность волокон внешнего слоя ещё выше и их оттенок ближе к серому. Если же плотность волокон не так велика, то цвет глаз будет серо-голубой. К тому же наличие меланина или других веществ даёт небольшую жёлтую или коричневатую примесь.

Данный цвет глаз, чаще всего приписывается ведьмам и колдуньям, а посему к зеленоглазым девушкам иногда относятся с подозрением. Только зеленые глаза получены не благодаря колдовским дарованиям, а в связи с небольшим количеством меланина.У зеленоглазых девушек во внешнем слое радужки распределён жёлтый или светло-коричневый пигмент. А в результате рассеяния синим или голубым цветом получается зелёный. Окраска радужной оболочки обычно неравномерная, существует большое количество разнообразных оттенков зеленого.Чисто зелёный цвет глаз встречается крайне редко, не более двух процентов людей могут похвастаться зелеными глазками. Их можно встретить у людей в Северной и Центральной Европе, а иногда и в Южной Европе. У женщин зеленые глаза встречаются гораздо чаще, чем у мужчин, что и сыграло определенную роль в приписывании этого цвета глаз колдуньям.

Янтарные глаза имеют монотонную светло-коричневую окраску, иногда в них присутствует желтовато-зелёный или красноватый оттенок. Их цвет также может быть близок к болотному или золотистому, что обусловлено наличием пигмента липофусцина.Болотный цвет глаз (он же ореховый или пивной) является смешанным цветом. В зависимости от освещения, он может казаться золотистым, коричнево-зелёным, коричневым, светло-коричневым с жёлто-зелёным оттенком.

Карий цвет глаз получается в результате того, что внешний слой радужки содержит много меланина, поэтому на нём происходит поглощение как высокочастотного, так и низкочастотного света, а отражённый свет в сумме даёт коричневый. Чем больше меланина, тем темнее и насыщеннее цвет глаз.

Карий цвет глаз является самым распространенным в мире. А в нашей жизни так – чего много – меньше ценится, поэтому кареглазые девушки порой завидуют тем, кому природа подарила зеленые или голубые глазки. Только не торопитесь обижаться на природу, карие глаза – одни из самых приспособленных к солнцу!

Черный цвет глаз по своей сути является темно-коричневым, но концентрация меланина в радужной оболочке настолько велика, что падающий на неё свет практически полностью поглощается.

Да бывают и такие глаза и не только в кино у вампиров ивурдалаков, но и в реальности! Красный или розоватый цвет глаз встречается только у альбиносов. Такой цвет связан с отсутствием в радужной оболочке меланина, поэтому цвет формируется на основе крови, циркулирующей в сосудах радужной оболочки. В некоторых редких случаях красный цвет крови, смешиваясь с синим, дает легкий фиолетовый оттенок.

Данное явление носит название гетерохрония, что в переводе с греческого обозначает «разный цвет». Причина такой особенности в разном количестве меланина в радужных оболочках глаза. Бывает полная гетерохрония – когда один глаз одного цвета, второй – иного, и частичная – когда части радужки одного глаза разных цветов.

Может ли цвет глаз меняться в течение жизни?В пределах одной цветовой группы цвет может меняться в зависимости от освещения, одежды, макияжа, даже настроения. А вообще с возрастом глаза у большинства людей светлеют, теряя первоначальный яркий цвет.

1.3. Аккомодация и ее дефекты

Читайте также:  Таблица для проверки зрения какая строчка

Способность глаза приспосабливать фокусное расстояние хрусталика к расстоянию до наблюдаемого предмета называется аккомодацией.

Если предмет приближается к глазу, то у хрусталика увеличивается кривизна; чем ближе предмет, тем больше оптическая сила глаза, ее изменения происходят приблизительно в пределах 60-70 дитр.У взрослого здорового человека при приближении предмета к глазу до расстояния 25 см аккомодация совершается без напряжения и благодаря привычке рассматривать предметы, находящиеся в руках, глаз чаще всего аккомодирует именно на это расстояние, называемое расстоянием наилучшего зрения.Для рассматривания еще более близких предметов приходится уже напрягать аккомодационный аппарат. Наиболее близкое расположение предмета от глаза, при котором еще возможно четкое изображение на сетчатке называют ближней точкой глаза (ближняя точка ясного видения). Расстояние до ближней точки глаза с возрастом увеличивается, следовательно, аккомодация — уменьшается.

Размер изображения на сетчатке зависит не только от размера предмета, но и от его удаления от глаза, то есть от угла, под которым виден предмет.

В медицине разрешающую способность глаза оценивают остротой зрения. За норму остроты зрения принимается единица, в этом случае наименьший угол зрения равен одной минуте. В нормальном глазу при отсутствии аккомодации задний фокус совпадает с сетчаткой, такой глаз называют эмметропическим или аметропическим, если это условие не выполняется.

Наиболее распространенными видами аметропии являются близорукость (миопия) и дальнозоркость (гиперметропия). Близорукость — недостаток глаза, состоящий в том, что задний фокус при отсутствии аккомодации лежит впереди сетчатки; в случае дальнозоркости задний фокус при отсутствии аккомодации лежит позади сетчатки. Для коррекции близорукого глаза применяют рассеивающую линзу, дальнозоркого – собирательную.

1.4. Бинокулярное зрение

Бинокулярное зрение — это зрение двумя глазами с формированием единого объемного зрительного образа, получаемого в результате слияния изображений от обоих глаз в одно целое. Только бинокулярное зрение позволяет полноценно воспринимать окружающую действительность, определять расстояния между предметами (стереоскопическое зрение) . Зрение одним глазом — монокулярное — дает представление о высоте, ширине, форме предмета, но не позволяет судить о взаиморасположении предметов в пространстве. Полноценное бинокулярное зрение является обязательным условием для ряда профессий — водители, летчики, хирурги и т. д. Самым лучшим бинокулярным зрением обладаю многие хищники для лучшего определения направления за объект, зрачки глаз у них вертикальны. У большинства жертв зрачки горизонтальны и остаются параллельными горизонту при наклоне головы.

1.5. Цветное зрение и колориметрия

Количество различимых глазом цветов велико – около 10 млн., различающихся по трем указанным параметрам. Описание такого множества оттенков невозможно без их классификации и символического обозначения. Цветовая система, позволяющая дать наиболее точное численное описание

цвета, была создана на основе экспериментальных и теоретических работ многих ученых. Наука об измерении цвета колориметрия, основанная на теории трехкомпонентного зрения и трехмерном цветовом пространстве.

В колориметрии принята трёхкомпонентная теория Цвета.

Цветные прямоугольники – участки покрытия, светящиеся под ударами электронов одним из основных цветов. Интенсивность свечения определяется характеристиками нужного цвета. Если один из основных цветов не воспроизводитсяна экране неправильная цветопередача.Примерно у 1% людей наблюдается отсутствие одного из зрительных пигментов в сетчатке, чаще всего — красного ( пигмент 630 нм ). Такие люди не воспринимают одним из основных цветов – это явление называется дальтонизмом.

1.6.Распространенные виды и симптомы глазных заболеваний

Болезни, связанные с повышенной чувствительностью взрослых и детей к отдельным веществам или внешним раздражителям. Это могут быть лекарственные аллергии, поллинозы (реакция на пыльцу растений), туберкулезно-аллергические и весенние конъюнктивиты.

Характерные признаки заболевания: отек и покраснение конъюнктивы, расширение фолликулов, слезотечение, зуд и слизистое отделяемое. В некоторых случаях может появиться сыпь, насморк, чихание и отдышка. А также ощущение песка и светобоязнь. Основное лечение – устранение аллергенов.

Это патология рефракции, связанная с разнобойным преломлением лучей, исходящих от предметов, из-за которого на сетчатке не проецируется их четкое изображение. Основные симптомы заболевания: нечеткое, размытое изображение, головные и лобные боли, быстрая зрительная утомляемость. Основное лечение: оптическая коррекция.

Нарушение рефракции, характеризующееся плохим зрением вдали из-за проецирования изображения перед сетчаткой. Симптомы: прищуривание, подношение предметов сильно близко к лицу, зрительная утомляемость. Лечение: оптическая коррекция, хирургическое или лазерное вмешательство.

4) Дальнозоркость (гиперметропия).

Нарушение рефракции, характеризующееся плохим зрением на близком расстоянии из-за проецирования изображения за сетчаткой глаза. Симптомы: затруднение чтения или выполнения работы, особенно ближе к вечеру, утомляемость глаз, тяжесть век и височные боли. У детей с врожденной дальнозоркостью может развиться амблиопия или косоглазие. Лечение: оптическая коррекция положительными линзами, гимнастика для глаз, хирургическое или лазерное вмешательство.

Заболевание, характеризующееся регулярным повышением внутриглазного давления. Симптомы: развивается незаметно, затем может появиться тяжесть в глазах, кратковременное затуманивание зрения, радужные колечки вокруг источников света. Потом наблюдается сужение полей и падение остроты зрения, боли в висках и надбровных дугах. Лечение: снижение внутриглазного давления, лазерное или хирургическое вмешательство.

6)Катаракта. Это помутнение хрусталика. Явный симптом: снижение остроты зрения. В запущенных случаях – вплоть до светоощущения. Чаще всего возникает у людей после 40 лет, но может быть и детской врожденной патологией. Развивается медленно, постепенно «окрашивая» хрусталик в голубовато-серый, затем белый или фарфоровый цвет. Основное лечение: капли, замена хрусталика.

Глава 2. Исследовательская часть

Для изучения данного вопроса было проведено анкетирование (см. в приложении 1) участие прошло 25 студентов 3 курса ИПК им.Д.А. Фурманова. В результате получилось следующие результаты.

источник

Формат: Microsoft PowerPoint 2003

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв, зрительные тракты в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим. Все эти органы и составляют наш зрительный анализатор или зрительную систему.

— 90% всей информации люди получают через глаза.

— В древности глазам приписывали всевозможные мистические свойства. Глаза часто символизировали смысл и суть жизни, их считали амулетами и оберегами. Древние греки рисовали красивые вытянутые глаза на носу кораблей, а египтяне на пирамидах изображали всевидящее око бога Ра.

Из истории: в Византии, Персии, у древних славян замужние женщины собирали слезную жидкость в специальные сосуды и использовали для лечения ран.

Статистика:
женщины плачут примерно в 4 раза чаще мужчин, но это связано не с мужественностью или женственностью, а с содержанием гормона пролактина, который отвечает за выработку грудного молока и слез.

Цвет радужки зависит от количества пигмента меланина. Темные глаза (много меланина в радужке) у жителей южных солнечных стран и слепящих снежных равнин.

Интегрированный (физика — биология – информационные технологии) урок изучения нового материала с элементами самостоятельной исследовательской работы.

Рассмотреть строение и свойства глаза, работу глаза как оптической системы, объяснить дефекты зрения и возможную профилактику и коррекцию этих дефектов; интегрировать и обобщать знания из различных областей знаний, ставить вопросы и находить ответы; формировать умение работать коллективно, давать взаимооценку.

количество палочек — 130 млн

количество колбочек (RGB) — 7 млн

оптическая сила глаза — 58 дптр

показатель преломления хрусталика — 1,44

Роговица — прозрачная оболочка, покрывающая переднюю часть глаза. В ней отсутствуют кровеносные сосуды, она имеет большую преломляющую силу. Входит в оптическую систему глаза. Роговица граничит с непрозрачной внешней оболочкой глаза — склерой.

Передняя камера глаза — это пространство между роговицей и радужкой. Она заполнена внутриглазной жидкостью.

Радужка — по форме похожа на круг с отверстием внутри (зрачком). Радужка состоит из мышц, при сокращении и расслаблении которых размеры зрачка меняются. Она входит в сосудистую оболочку глаза. Выполняет ту же функцию, что диафрагма в фотоаппарате, регулируя светопоток.

Зрачок — отверстие в радужке. Его размеры обычно зависят от уровня освещенности. Чем больше света, тем меньше зрачок.

Хрусталик — «естественная линза» глаза. Он прозрачен, эластичен — может менять свою форму, почти мгновенно «наводя фокус», за счет чего человек видит хорошо и вблизи, и вдали. Располагается в капсуле, удерживается ресничным пояском. Хрусталик, как и роговица, входит в оптическую систему глаза.

Стекловидное тело — гелеобразная прозрачная субстанция, расположенная в заднем отделе глаза. Стекловидное тело поддерживает форму глазного яблока, участвует во внутриглазном обмене веществ. Входит в оптическую систему глаза.

Сетчатка — состоит из фоторецепторов (они чувствительны к свету) и нервных клеток. Клетки-рецепторы, расположенные в сетчатке, делятся на два вида: колбочки и палочки. В этих клетках, вырабатывающих фермент родопсин, происходит преобразование энергии света (фотонов) в электрическую энергию нервной ткани, т.е. фотохимическая реакция.

Палочки обладают высокой светочувствительностью и позволяют видеть при плохом освещении, также они отвечают за периферическое зрение. Колбочки, наоборот, требуют для своей работы большего количества света, но именно они позволяют разглядеть мелкие детали (отвечают за центральное зрение), дают возможность различать цвета. Наибольшее скопление рецепторов находится в центральной ямке (желтое пятно), отвечающей за самую высокую остроту зрения. Сетчатка прилегает к сосудистой оболочке, но на многих участках неплотно. Именно здесь она и имеет тенденцию отслаиваться при различных заболеваниях сетчатки.

Склера — непрозрачная внешняя оболочка глазного яблока, переходящая в передней части глазного яблока в прозрачную роговицу. К склере крепятся шесть глазодвигательных мышц. В ней находится небольшое количество нервных окончаний и сосудов.

Острота зрения. Напротив зрачка в сетчатке находится так называемое желтое пятно, в середине которого – центральная ямка. Плотность зрительных клеток (палочек и колбочек) в этом месте наибольшая, поэтому здесь наивысшая острота зрения.

Аккомодация — способность глаза приспосабливаться к видению как на близком, так и на далеком расстоянии, за счет изменения кривизны (а значит и оптической силы) хрусталика. Предел аккомодации – 10 см от глаза. Расстояние наилучшего видения (без напряжения) для нормального глаза – 25 см.

Адаптация — рефлекторное приспособление глаза к изменению яркости.

Инерционность. Инерционность зрения характеризуется средним временем сохранения светового ощущения примерно 0.05 с.

Цветоощущение. Цветоощущение реализуется в пределах длин волн от 0.38 мкм (фиолетовый) до 0.76 мкм (красный). Наиболее чувствителен глаз к излучению с длиной волны 0,555 мкм (зеленая часть спектра).

Бинокулярность. Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение). Правая сторона сетчатки каждого глаза передает через зрительный нерв «правую часть» изображения в правую сторону головного мозга, аналогично действует левая сторона сетчатки. Затем две части изображения — правую и левую — головной мозг соединяет воедино.

Объемное восприятие окружающего позволяет измерять расстояние на глаз – чем больше угол между лучами, идущими в правый и левый зрачки, тем предмет ближе.

* У рыб хрусталик круглый и плотный и может подстраивать фокус, только двигаясь относительно сетчатки. Глаз рыбы настроен на резкое видение близких предметов и аккомодирует на далекие, отдаляя хрусталик от сетчатки.

* Глаз обычного человека может различать около 160 цветов. Тренированный глаз художника в состоянии различать свыше 10000 цветов и оттенков.

* Цветовое зрение по-разному выражено у представителей разных рас. Более половины европеоидов, например, обладают повышенной чувствительностью к красному и различают больше его оттенков.

* Новорожденные лучше всего различают зеленые и желтые предметы.

* У курильщиков восприимчивость цветов снижается

* Органы многоклеточных животных (кроме губок) обеспечивают восприятие световых раздражителей. Простые органы зрения (например, у дождевых червей) состоят из светочувствительных клеток без пигмента, рассеянных среди эпителиальных клеток наружного покрова. Они воспринимают лишь изменения в интенсивности освещения.

* У некоторых медуз и плоских червей разрозненные светочувствительные клетки сконцентрировались в глазные пятна (стигмы).
Дальнейшее усложнение органов зрения у моллюсков привело к углублению глазного пятна в глазной бокал и образованию пузырька (стекловидного тела)

* Эволюция органов зрения у насекомых, ракообразных и некоторых других беспозвоночных пошла по пути формирования фасеточных глаз. В отличие от глаз камерного типа здесь нет единой сетчатки, рецепторы собраны в маленькие группы (ретинулы), каждая из которых обслуживается отдельным диоптрическим аппаратом. Понятия аккомодации, близорукости или дальнозоркости не приложимы к фасеточному глазу.

Все органы зрения предназначены для того, чтобы захватывать отдельные частицы света — фотоны. Вполне возможно, что еще в докембрийский период жили организмы, способные воспринимать свет. Это могли быть и многоклеточные существа, и одноклеточные. Однако первое известное нам животное, наделенное зрением, появилось около 540 миллионов лет назад. А всего через сто миллионов лет уже существовали все известные нам сегодня типы органов зрения. Нам остается лишь правильно расставить их, чтобы понять их эволюцию.

У одноклеточных животных, например эвглены зеленой, имеется лишь светочувствительное пятно — «глазок». Оно различает свет, что жизненно важно для эвглены, ведь без энергии света в ее организме не может протекать фотосинтез, а значит, не образуются органические вещества. До появления «глазка» одноклеточные животные хаотично сновали в толще воды, пока случайно не попадали на свет. Эвглена же всегда плывет только на свет.

У первых многоклеточных животных органы зрения крайне примитивны. Так, у многих морских звезд по всей поверхности тела разбросаны отдельные светочувствительные клетки. Эти животные способны лишь различать светлое и темное. Заметив проплывающую над ними тень, — хищник? — они спешат зарыться в песок.

У отдельных животных светочувствительные клетки сгруппировались в виде «глазного пятна». Теперь можно было (пусть приблизительно) оценить, с какой стороны двигался хищник. Более пятисот миллионов лет назад глазные пятна появляются у медуз. Этот орган зрения позволил им ориентироваться в пространстве, и медузы заселили открытое море. Дождевым червям подобные пятна помогли скрываться от света в землю.

Следующую ступень эволюции глаза демонстрируют ресничные черви. В передней части их тела имеются два симметричных пятна, в каждом из которых находится до тысячи светочувствительных клеток. Эти пятна наполовину погружены в пигментную чашку. Свет падает лишь на верхнюю половину пятен, не прикрытую пигментом, и это позволяет животному определить, где находится источник света. При желании можно назвать ресничного червя «животным с двумя глазами».

Постепенно глазное пятно еще глубже вдавливалось в эпителий. Образовался желобок — «глазной бокал». Например, подобным органом зрения обладают речные улитки. Его чувствительность зависит от направления взгляда. Однако улитка видит все вокруг себя расплывчатым, словно глядит сквозь матовое стекло.

Острота зрения повышалась по мере того, как сужалось наружное отверстие глаза. Так появился глаз с точечным зрачком, напоминавший камеру-обскуру. Им смотрит на мир моллюск наутилус, родич давно вымерших аммонитов. Толщина глаза у наутилуса — около сантиметра.

На его сетчатке имеется до четырех миллионов светочувствительных клеток. Однако этот орган зрения улавливает слишком мало света.

Поэтому мир для наутилуса выглядит мрачно.

На каком-то этапе эволюция привела к появлению двух различных органов зрения. Один — назовем его «глаз оптимиста» — позволял видеть все в светлых красках, но очертания предметов были смутными, неясными, расплывчатыми. Другой, «глаз пессимиста» — видел все в черных тонах; мир казался грубым, изломанным, резко очерченным. Именно от него и происходит человеческий глаз.

Позднее над зрачком нарастает прозрачная пленка; она защищает его от попадания грязи и в то же время меняет его преломляющую способность. Теперь все больше частиц света попадает внутрь глаза, к его светочувствительным клеткам. Так возникает первый примитивный хрусталик. Он фокусирует свет. Чем больше хрусталик, тем острее зрение. Для обладателя такого органа зрения (именно он и называется «глазом») окружающий мир становится ярким и отчетливым.

Глаз оказался таким совершенным органом зрения, что природа «изобрела» его дважды. Вначале он появился у головоногих моллюсков, а позднее у нас, позвоночных, причем у обеих групп животных выглядит он по-разному, да и развивается из различных тканей: у моллюсков из эпителия, а у человека сетчатка и стекловидное тело возникают из нервной ткани, а хрусталик и роговица — из эпителия.

Добавим, что у насекомых, трилобитов, ракообразных и некоторых других беспозвоночных животных сформировался сложный фасеточный глаз. Он состоял из множества отдельных глазков — омматидиев. Например, глаз стрекозы содержит до тридцати тысяч таких глазков.

В своей книге «Происхождение видов путем естественного отбора» Чарльз Дарвин назвал глаз «органом необычайного совершенства и сложности», и именно это привело его в замешательство. Неужели «зеркало мира», которое мы неизменно носим с собой, возникло из клочка кожи с вкрапленными в него светочувствительными клетками — вроде тех, которыми наделен дождевой червь? Дарвин признавался, что эта гипотеза казалась ему «в высшей степени абсурдной». А противники эволюционной теории по сей день именно глаз приводят как пример несообразности законам эволюции. Разве может по чистой случайности кожица превратиться в сложнейший орган чувств?

Однако они не правы. Если посмотреть на палочки, начерченные для счета дикарем, и перевести взгляд на уравнения высшей математики, то с трудом можно представить себе, что «одно произошло из другого путем долгой эволюции». Но это именно так. Вот и в природе мы обнаружили обладателей самых разнообразных органов зрения. Они помогли нам схематично понять, как развивалось зрение. Что же добавляют в эту схему последние исследования?

Читайте также:  Таблица для проверки зрения какую строчку надо видеть

Шведские биологи Дан Эрик Нильсон и Сюзанна Пелгер из Лундского университета смоделировали на компьютере историю эволюции глаза. В этой модели все началось с появления тонкого слоя клеток, чувствительных к свету. Над ним лежала прозрачная ткань, сквозь которую проникал свет; под ним — непрозрачный слой ткани.

Отдельные, незначительные мутации могли менять толщину прозрачного слоя или кривизну светочувствительного слоя. Они происходили случайно. Ученые лишь внесли в свою математическую модель правило: если мутация улучшала качество изображения хотя бы на один процент, то она закреплялась в последующих поколениях.

В конце концов, «зрительная пленка» превратилась в «пузырек», заполненный прозрачным студнем, а затем и в «рыбий глаз», снабженный настоящим хрусталиком. Нильсон и Пелгер попробовали оценить, сколько времени могла длиться подобная эволюция, причем они выбрали худший, самый медленный вариант развития. Все равно результат оказался сенсационным. Краткая история глаза насчитывала всего… чуть более полумиллиона лет — сущий миг для планеты. За это время сменилось 364 тысячи поколений животных, наделенных различными промежуточными типами органов зрения. Путем естественного отбора природа «проверила» все эти формы и выбрала лучшую — глаз с хрусталиком. Задача, как выяснилось, была из легких.

Подобная модель наглядно доказывает, что как только первые примитивные организмы открыли саму возможность «запечатлевать» мир — моментально копировать одним из своих органов расположение окружающих предметов и их форму, — тут же этот орган начал совершенствоваться, пока не достиг высшей формы развития. История глаза, в самом деле, оказалась краткой; она была «молниеносной войной» за возможность «видеть все в истинном свете». В победителях числятся все: и человек, и рыбы, и насекомые, и улитки, и даже эвглена, порой лучше нас, «амбивалентных», различающая, где черное, а где белое.

Модель шведских ученых вполне вписывается в «ревизию биологических вех», происходящую в последнее время в науке. Известные нам ископаемые находки свидетельствуют, что эволюция органов зрения длилась сто миллионов лет. По всей вероятности, все произошло значительно быстрее, поэтому в «Книге жизни», что прочитали биологи, недостает пока многих страниц.

Математическая модель, а также генетические открытия убеждают нас в том, что различия между известными типами органов зрения не так велики, как казалось прежде. «Мы убедились, — отмечает немецкий биолог Кристоф Кампенхаузен, — что разные типы органов зрения возникают из-за незначительных изменений в геноме: одни гены активизируются, другие отключаются».

Немецкий биолог Вальтер Геринг выяснил, что ген под названием Pax-6 формирует органы зрения у человека, мышей и плодовых мушек дрозофил. Если он имеет дефект, глаз не развивается вовсе или остается в зачаточном виде. В свою очередь, при встраивании гена Pax-6 в определенные участки генома у животного появлялись дополнительные глаза.

Опыты показали, что ген Pax-6 отвечает лишь за развитие органов зрения, а не за их тип. Так, с помощью гена, принадлежавшего мыши, ученый запускал механизм развития глаз у дрозофил, причем у них появлялись дополнительные органы зрения — тоже фасеточные — на ногах, крыльях и усиках. «С их помощью насекомые могли воспринимать свет, — отмечает Вальтер Геринг, — ведь нервные окончания тянулись от дополнительных органов зрения к соответствующему участку головного мозга».

Позднее тот же генетик сумел вырастить на голове лягушки дополнительные глаза, манипулируя геном Pax-6, взятым у дрозофилы. Его коллеги обнаружили тот же самый ген у лягушек, крыс, перепелов, кур и морских ежей. Исследование гена Pax-6 показывает, что все известные нам типы органов зрения могли возникнуть благодаря генетическим мутациям одного и того же «первоглаза».

Впрочем, есть и другие мнения. Ведь, например, у медуз нет гена Pax-6, хотя органы зрения есть. Возможно, этот ген лишь на каком-то этапе эволюции стал управлять развитием зрительного аппарата. Вот что говорит по этому поводу Д.Э. Нильсон: «У простейших организмов ген Pax-6 отвечает за формирование передней части тела, а поскольку она лучше всего приспособлена для размещения здесь органов чувств, этот ген позднее стал отвечать и за развитие органов зрения».

Дальнейшее известно. Прошло сто миллионов лет, а, может быть, пятьдесят, а, может, еще меньше….

Иридодиагностика (от лат. Iris – «радужка») – диагностика наследственности и предрасположенности к заболеваниям по радужке. Каждому участку тела или органу соответствует определенный сегмент на радужке глаза.

Так, что может быть ценнее и дороже информации о здоровье. Человечество с древних времен проводило оценку состояния организма по так называемым, «окнам тела» — глазам, ушным раковинам, носу, ротовой полости, кожным покровам, и т. д. Но наиболее древним информативным методом считается, метод диагностики по глазам. Если мы всмотримся достаточно глубоко в глаза людей, мы можем увидеть: сомнения, боли, печали, любые чувства. Наш дух проявляется в наших глазах и из них излучается. Глаза являются наиболее простым и наиболее коротким путем выражения духовности тела.

Широко открытые глаза, мягкие и излучающие любовь выражают высокую степень духовности, возможно, никакая другая часть тела не показывает так выразительно жизненную силу как глаза. Их считают зеркалом души. Они показывают состояние внутренней энергии тела человека. Когда эта внутренняя энергия горяча, ее яркое пламя блестит в глазах. В глазах проявляются и чувства – они искрятся, когда человек весел, сияют, когда человек счастлив и теряют блеск, когда он утомлен. В тех случаях когда дух отсутствует, как например при глубокой депрессии, глаза пусты. В состоянии апатии глаза грустные и часто в них видна глубокая тоска. У человека, находящегося между этими состояниями, глаза бывают матовыми и неподвижными, что свидетельствует о том, что функции понимания того, что видит человек нарушена. В большинстве случаев такие матовые глаза бывают следствием тяжелых переживаний и травматических ситуаций.

В пещерах Малой Азии, возраст которых весьма почтителен (около 5 тысяч лет), были найдены плиты с выбитыми на них изображениями радужкой оболочки человеческого глаза. А первым известным нам популяризатором метода по праву считается египетский жрец Ел Акс .

Современное возрождение иридодиагностики связано с именем доктора медицины Игнаца Пекцели (J.Peczeli, 1826-1907) из Будапештского предместья Егервара. С его именем связаны систематизация иридологических тестов и первые обоснования метода иридодиагностики.

Современная история иридодиагностики знала как периоды массового увлечения этим методом, с акцентом на «чудо» так и периоды забвения. Пройдя тысячелетний путь развития этот метод живуч и актуален сегодня. Он абсолютно безболезнен и безвреден, не требует предварительной подготовки пациента, не имеет противопоказаний и довольно — таки прост, потребуется лишь небольшое усердие в освоение данной методики и ваша наблюдательность. При этом сразу же после осмотра радужной оболочки можно сделать выводы, а заболеваниях находящихся в расцвете симптоматики, причем, выявить первопричину данного состояния, а следовательно в лечении направить внимание на «первую скрипку» болезни. При этом древний метод дает возможность судить об общем состоянии организма и его системах и дать соответствующие рекомендации по его выздоровлению. Но, что мне кажется более важным, заранее выявить слабый орган и системы организма, которые в будущим могут дать сбои в работе.

1. Зрачок – выполняет роль диафрагмы, регулирует световой поток, поступающий в глаз. Диаметр зрачка, в среднем 3 мм, но может быть от 2 до 8.

2. Зрачковая кайма – очень красивая бахромка темно-коричневого цвета. Представляет собой недифференцированную сетчатку (первый слой сетчатки – слоя пигментного эпителия) – переходит на цилиарное тело и формирует зрачковую кайму. Зрачковая кайма часто дает иридологическую симптоматику.

3. Автономное кольцо – ломанная линия, которая делит радужку на 2 зоны – зрачковый пояс и цилиарный. Автономное кольцо – это проекция на поверхность радужной оболочки малого артериального круга.

4. Зрачковый пояс – зона между зрачковой каймой и автономным кольцом, состоящая из тонких радиально расположенных волокон (трабекул). Ширина ее 1-2 мм.

5. Лимб – иначе «корень радужки». В корне радужки (по ее окружности), располагается большой артериальный круг. От него идут сосудистые аркады к центру, которые, сливаясь, формируют малый артериальный круг радужки. Лимб непосредственно соединяется с роговицей.

6. Цилиарный пояс – зона между автономным кольцом и лимбом. Ширина 3-4 мм. В нем переплетаются мезодермальные тяжи – трабекулы – радужки. Крупные трабекулы соответствуют сосудистым анастомозам (соединениям) между большим и малым кругом кровообращения радужной оболочки в глубине радужки. Мелкие трабекулы не содержат сосудов и являются мелкими мезодермальными тяжами. В норме соотношение размеров зрачкового и цилиарного пояса 1:3 (зрачковый пояс в 3 раза уже цилиарного).

Различная интенсивность окраски новообразованных пятнышек, степень разволокнений и затемнений, а также просто возрастные изменения цветности радужек глаз — во всех этих нюансах сможет разобраться только специалист, связав воедино всю картину патологии, — её историю, настоящее и прогрессию.

Данные примеры показывает, что иридознаки возникают задолго до того, как развиваются клинические проявления болезни. А в случае ее развития, позволяют точно определить локализацию патологического (болезненного) процесса.

источник

Кандидат физико-математических наук А. ХАЗЕН (Нью-Джерси).

Механизмы зрения, казалось бы давно и хорошо изученные, таят в себе множество противоречий. Так, диаметры торцов палочек и колбочек (рецепторов ночного и дневного зрения соответственно) раз в десять больше размера минимальной точки изображения, воспринимаемой глазом; по законам физики на ярком свету человек должен хуже видеть мелкие детали, а реально все наоборот… Объясение этим и многим другим парадоксам зрения нашел доктор физико-математических наук Александр Моисеевич Хазен, более тридцати лет руководивший научно-исследовательской лабораторией в МГУ им. М. В. Ломоносова.

Нас всех учили в школе, в институтах, в научных и популярных статьях и книгах, что глаз человека устроен подобно фотоаппарату. «Объектив» глаза — хрусталик — проецирует изображение на чувствительные элементы сетчатки — торцы палочек и колбочек, которые образуют «экран-фотопластинку». Сигналы от них не исследованными до конца путями попадают в мозг по глазному нерву, жгуту из множества нервных волокон, число которых на порядки меньше числа палочек и колбочек. Удавалось даже найти в областях мозга, ответственных за зрение, что-то похожее на нерезкую проекцию изображения, попадающего в глаз.

Однако откройте физический, биологический, медицинский учебники, где обычно приводится сечение сетчатки глаза. Она представляет собой прозрачный, слегка мутноватый «листок» толщиной около 0,1 мм. На его поперечном разрезе видны слои клеток, получившие названия от первооткрывателей. На рисунках обычно приводится стрелка, показывающая направление падения света на сетчатку. Вопреки всем объяснениям она направлена не на торцы палочек и колбочек, а на обратную их сторону! Слой палочек и колбочек (фоторецепторов) упирается торцами (которые считаются светочувствительными элементами глаза) в темный пигментный слой. Поэтому торцы палочек и колбочек не могут ничего «видеть». По аналогии с техническими устройствами можно сказать, что свет на сетчатку глаза падает не на «фотодиоды», а на «технологическую плату», на которой они «распаяны». Об этом учебники, научные и популярные статьи напрочь умалчивают.

Анатомия сетчатки демонстрирует и еще один, казалось бы, парадокс. Палочки и колбочки не имеют возможности передавать свои сигналы адресно дальше в нервную систему и мозг. Ведь следующий за ними слой нервных клеток, которые называют горизонтальными, так сильно перепутан произвольными связями, что о передаче нервных импульсов «напрямую» через этот слой не может быть и речи. Анатомия сетчатки продолжает список парадоксов «видящих» торцов палочек и колбочек. Следующий слой биполярных клеток все-таки реализует однозначную связь «вход — выход». Но поперечные размеры этих клеток намного больше палочек и колбочек. Потеря прямой адресности сигналов этим закрепляется.

В передаче импульсов в нервных системах участвуют электрохимические контакты, которые называют химическими синапсами (для простоты — просто синапсами). В результате электрохимических процессов, проходящих в них с участием специфических веществ — нейромедиаторов, нервный импульс получает возможность «передавать вещества» по нервам-«проводам». Поэтому связи между разными дендритами нервов зависят как от нервных импульсов в сетчатке, так и от процессов во всем организме, которые могут поставлять нейромедиаторы в окрестности синапсов в сетчатке и в мозге как с участием нервных импульсов, так и с током крови или других жидкостей.

В слое амакриновых клеток число ветвлений и синаптических связей максимально. Участвуют в них около тридцати видов нейромедиаторов. В частности, дендриты и синапсы, разные по типам нейромедиа торов, имеют существенно различную «топографию» ветвлений — от прямых связей большой длины (в масштабах сетчатки) до густой мелко ветвящейся сети типа «корней травы».

Завершает обработку нервных импульсов палочек и колбочек слой ганглиозных клеток, каждая из которых связана с аксоном, уходящим в мозг. Их жгут служит глазным нервом. Ганглиозные клетки еще крупнее биполярных, не говоря о том, что путаница импульсов после слоя горизонтальных клеток усиливается в слое амакриновых клеток.

Луч света падает на сетчатку со стороны ганглиозных клеток. Все клетки и дендриты в сетчатке образованы своими веществами, показатель преломления которых неизбежно немного отличается. Возникают малые отклонения луча (кстати, сетчатка-«листок» слегка мутновата именно из-за этого).

Даже такого предельно схематизированного, известного более ста лет описания сетчатки достаточно, чтобы понять — все аналогии сетчатки с «фотопластинкой» неверны. Они свидетельствуют только о том, насколько прочными и долголетними в науке могут быть абсолютно очевидные ошибки. Чтобы их устранить, надо ответить на, казалось бы, простой вопрос.

Что и как слышит ухо и видит глаз?

В современных радиоприемниках часто ставят индикатор, на котором скачут световые столбики — отображается спектр воспроизводимых им звуков. Спектр — это зависимость амплитуды (или энергии) колебаний от их частоты. В приемниках его показывают просто для развлечения. Чтобы удовольствие не было дорогим, в конструкции приемника непрерывный спектр превращают в гистограмму — представляют в виде столбиков. Можете сами посмотреть, как меняется спектр на экранчике в зависимости от рода звуков, которые слышны.

И человек и животное слышит путем анализа звукового спектра в ухе и в мозге. Главная деталь слухового аппарата называется улиткой. Еще Герман Гельмгольц (1821-1894) показал, что она служит своего рода спектроскопом, разлагающим звуковые колебания на частотные составляющие — в спектр. Каждую частоту фиксирует свой сенсор в виде нервных клеток и их связей.

Звучание оркестра состоит из суммы отрезков разных синусоид, но в целом оно оказывается случайным процессом. Соответственно и на экранчике радиоприемника виден спектр случайного процесса. Однако ноты, по которым играют оркестранты, талант музыкантов и дирижера создают в этом случайном процессе вполне определенные средние характеристики, изменяющиеся во времени и зависящие от характера исполняемого произведения.

Для полного описания колебаний необходимо знать не только частоту и амплитуду, но еще и фазу. Поэтому ухо должно определять как спектр случайных звуковых волн, так и фазы их составляющих. Характеризуя существующее одновременно множество разных колебаний, в качестве аналога фазы вводят математическое понятие — функцию корреляции, которая в учебной литературе про органы слуха упоминается редко. Несмотря на это, ухо все-таки воспринимает то, что выражается спектрами и функциями корреляции звуковых колебаний, которые анализирует нервная система в ухе и мозге, и в результате мы все слышима как надо.

В органах зрения происходят аналогичные процессы, но в отличие от спектра самих электромагнитных волн (цветного зрения) в них участвуют более абстрактные спектры, связь с которыми осталась вне должного внимания.

Сейчас в интернетовских статьях о разнообразных мировых проблемах часто пишут, что природа проста, а «эти ученые» своими формулами все усложняют. Но математика — только язык науки. Она упрощает описание природы и техники, вводя новые «слова» и правила обращения с ними. Задумайтесь, смогли бы вы разговаривать, если, например, вместо слова «радиоприемник» приходилось бы каждый раз описывать его «простыми словами» из лексикона «приготовления обеда»?

В математике существует понятие «метаязык». Под ним понимают обычный разговорный язык, слова которого специалист заменяет сложными формулами. Инженер-связист на слово «радиоприемник» реагирует известными ему инженерными и физическими подробностями, зависящими от контекста. Специалисту математические понятия «спектр» и «функция корреляции» упрощают понимание, указывают классы описывающих их формул. По этим кратким обозначениям при необходимости и желании можно восстановить многие страницы формул и, в частности, описать процессы слуха и зрения.

По отношению к свету слова «спектр» и «спектрограф» в первую очередь ассоциируются с радугой и школьными воспоминаниями о Ньютоне, который делал опыты с разложением белого света на цветные составляющие, или о теории цветового зрения того же Гельмгольца.

Читайте также:  Таблица для проверки зрения для водительского удостоверения

Для «картинок» понятие «спектр» имеет другой смысл. Поясним его. Всем знакомы полоски на товарах в магазинах. Их сканируют лазерным лучом и узнают все, что нужно кассиру. Полоски — это зависимость амплитуды отраженного света от координаты на плоскости. При сканировании она превращается в зависимость амплитуды от времени, то есть в колебания со своим спектром. Для математического описания безразлично, рассматриваются колебания во времени или относительно расстояний. Поэтому с частотными составляющими спектра во времени можно сопоставить функции координат на прямой или на плоскости. Их называют спектром пространственных частот. Аналогичный спектр, но двухмерный, можно получить и для обычной фотографии. Фазовые соотношения для случайных двухмерных пространственных частот описывают двухмерные функции корреляции пространственных частот в плоскости изображения. Иначе говоря, с «картинками» на языке математики можно сопоставить описание пространственных частот в терминах спектров и функций корреляции.

Что такое дифракционная картина, помнят многие. Она возникает, например, на достаточно удаленном экране при падении на него света, прошедшего через отверстие в непрозрачном экране. Ее наиболее простое определение — двухмерный спектр пространственных частот отверстия в транспаранте. Если сфокусировать линзой изображение яркой точки, экран нужно будет поместить в ее фокальную плоскость. Хрусталик глаза делает именно это. На сетчатку глаза попадают не «математические точки» наблюдаемого объекта, а сумма их дифракционных картин как спектров пространственных частот зрачка. Эта сумма спектров пространственных частот и есть то, что видит глаз.

Глаз вместе с мозгом — это «компьютер», обрабатывающий спектры пространственных частот и их функции корреляции, а не аналог фотоаппарата.

Карта в природе и для географов

Географическая карта с привычной сеткой меридианов и параллелей — один из примеров связи объектов с пространственными координатами. Фотографическое изображение отличается от нее тем, что «координатная сетка» на нем условна. Она существует за счет того, что фотографическая эмульсия прочно скреплена с подложкой. Проявка создает в эмульсии зерна, отвечающие ее засветке изображением. Сами зерна расположены случайно. Однозначно заданное положение каждого зерна как элемента изображения эквивалентно введению системы координат. Без этого фотографии быть не может, независимо от того, реализуется ли она буквально или, например, с помощью телевизионной развертки.

Посмотрите еще раз на схему устройства сетчатки. Допустим, что палочки и колбочки расположены в ней строго упорядоченно и свет падает на их торцы (что заведомо не так). Даже в этом случае мозг «не знает номера» данной палочки, то есть ее координат на сетчатке, того места, где она расположена. Полная аналогия глаза и фотоаппарата невозможна!

Но ведь «карта» у животных и людей изначально имеет другой вид и смысл, чем у географов. Вспомните, как объясняют дорогу без карты. Например, говорят: идите минут десять мимо поля, у большого дуба поверните в лес и т. д. В этом случае не сетка координат, а сами окружающие предметы задают свои положения и расстояния между собой. Для количественного выражения расстояний в обиходе часто используют время движения от одного объекта к другому. Такие объяснения можно назвать «картой пешехода» в отличие от обычной географической карты.

Почему палочки и колбочки направлены против падения света?

Все рассказанное про спектры пространственных частот и «карту пешехода» позволяет устранить самый застарелый и интригующий парадокс зрения — объяснить обратную по отношению к падению света ориентацию палочек и колбочек в сетчатке. Это впервые сделано автором в работе [1].

Повторю, что нейроны в сетчатке глаза имеют свой внутренний состав и структуру, свои оболочки-биомембраны. Вещества, из которых они состоят, слегка отличаются от межклеточной среды величиной показателя преломления. Слои, изменяющие пропускание или направление световых волн, в оптике называют транспарантом. Таким транспарантом на пути света к фоторецепторам глаза служат слои клеток в сетчатке. Условно путь света с их участием на рис. 1 показан «изломами» стрелки с надписью «свет».

Координаты каждой нервной клетки в слоях сетчатки случайны. Тем не менее их положения в организме точно заданы — это его микроанатомическая составляющая, которая образовалась вместе с глазом. Аналогичным образом микроанатомия фиксирует положение каждого фоторецептора по отношению к этим клеткам. В результате координаты фоторецепторов в сетчатке и координаты нервных клеток в ней (транспарант) оказываются связанными между собой и со спроецированным хрусталиком изображением. Но это не «географическая карта-фотопластинка», так как в глазу «меридианов и широт» нет. Зафиксированные микроанатомией взаимные положения фоторецепторов и нервных клеток связаны с координатами точек изображения «картой пешехода». Это подтверждается еще одним парадоксом зрения, о котором в литературе умалчивают.

Всем известно, что на ярком свету человек лучше видит мелкие детали объектов. Столь же известно, что диаметр зрачка при этом уменьшается в 5-10 раз. Соответственно увеличивается диаметр центрального пятна и всей «картинки» спектров пространственных частот. На такое фотоаппарат или телескоп ответит уменьшением разрешения мелких деталей изображения. Если бы глаз по принципам регистрации изображений был подобен фотоаппарату, то в сумерках благодаря расширению зрачка мелкие детали были бы видны заметно лучше, чем на ярком свету. Это явно не так!

Противоречие устраняется напоминанием, что глаз использует ориентиры «карты пешехода». Уменьшение диаметра зрачка увеличивает количество фоторецепторов, воспринимающих спектр как элемент изображения. Понятно, что, если используется одновременно много ориентиров, точность «карты пешехода» будет выше. Поэтому факт-парадокс лучшего разрешения глазом деталей на ярком свету доказывает правильность оценки ведущей роли спектров пространственных частот точек изображений, введенный в работе [1]. Кстати, это же объясняет общеизвестный факт лучшего разрешения простых объектов — точек, прямых, окружностей. Ведь их спектры не только «засвечивают» множество фоторецепторов, но имеют закономерный вид. Это создает дополнительные признаки для узнавания.

Теперь обратите внимание, что слои горизонтальных и особенно амакриновых нервных клеток в сетчатке переплетены многочисленными нервными связями. Поскольку скорость распространения нервных импульсов всего 20-120 м/с (сравните ее со скоростью распространения электрических импульсов в компьютерах, которая примерно равна скорости света 3·10 8 м/с), а диаметр сетчатки примерно около трех сантиметров, время распространения нервного импульса напрямую поперек глаза составляет порядка 0,1-0,5 миллисекунды. Длительность фронтов нервных импульсов в сотни раз меньше. Пример «карты пешехода» напомнил, что расстояния можно выражать в единицах времени движения. Приведенные порядки численных величин показывают, что результаты взаимодействия нервных импульсов в любой нервной клетке сетчатки могут реально зависеть от их задержек, то есть от расстояний между клетками. Электрические связи между ними разветвленные, они случайны, но одновременно несут в себе закономерности микроанатомии сетчатки. Функции корреляции, теперь уже нервных импульсов, содержат в себе пространственные координаты микроанатомии сетчатки в форме времени прохождения импульсов между ее клетками.

Взаимодействие двух классов функций корреляций пространственных частот (по оптическим путям и по времени распространения) создает привязку изображений к «адресам» палочек и колбочек, выраженным на языке «карты пешехода». Участвует в этом, как упоминалось выше, около тридцати нейромедиаторов и специфических для них синапсов. Ветвления нервов, использующих в своих синаптических связях каждый медиатор, существенно различны. За счет этого с помощью электрических функций корреляции каждый фоторецептор сам, без какой-либо внешней системы координат, сообщает мозгу свое положение в плоскости сетчатки. Многообразие нейромедиаторов и форм ветвления связей гарантирует такую точность определения взаимного положения фоторецепторов, нервных клеток и элементов изображения, которую не способен обеспечить никакой «микрометр» на сетке «меридианов и параллелей». Это же позволяет в самом глазу выделять движения объектов и другие их характеристики. Окончательную привязку изображений зрения к окружающим предметам создают мышечные движения человека за счет выделения при них нейромедиаторов, аналогичных каким-то из их многих видов в сетчатке и мозге. Закрепляется эта связь «прорастанием» нервов в сетчатку и мозг в самые первые месяцы развития ребенка, когда постепенно развивается координация его движений (подробности см. в [2], [4]). Потому словом «зрение» можно назвать то, что человек «видит мозгом».

Многим читателям математические термины, использованные выше, непривычны. Однако они в последние десятилетия стали основой методов обработки радиолокационных сигналов, приема и передачи при обычной и космической связи, сжатия объемов информации для телевидения и цифровой фотографии и многих других научных и технических задач. Сложная спектральная и корреляционная математическая обработка изображений и терминология, используемая для их описания, сегодня известны широкому кругу специалистов. Поэтому введенные в работе [1] новые принципы открывают огромную область новых применений известного математического аппарата. А популярное их изложение может оказаться более значимым, чем многие страницы формул научных статей и книг.

Метаязык в своем смысле столь же строг, как и отражаемые им формулы. Поэтому необходимо дать пояснение. Линза преобразует направления падающего на нее света в положение точек в своей фокальной плоскости. Однако транспарант — клетки сетчатки, искажающие направления лучей, находится после линзы-хрусталика. Поэтому его вклад в спектр-«картинку» реализуется сложными путями. Тут становится существенной особенность, которая в литературе игнорируется из-за общепринятого утверждения, что якобы «видят» торцы фоторецепторов.

Рецепторы ночного зрения — палочки в глазу по форме есть именно «палочки». Если их торец не может быть фоторецептором, то играть эту роль должны их боковые поверхности. Это гарантирует высокую чувствительность фоторецепторов глаза к направлениям падающих на них лучей света (боковые поверхности колбочек конические, чем, в частности, объясняется более низкое разрешение цветного зрения по сравнению с черно-белым). Для возникновения спектра важно направление фронта световых волн. В органах зрения живых организмов — от фасеточных у насекомых до глаза человека, — вопреки общепринятому, именно это направление есть важнейшее. Фоторецепторы всех форм зрения, по-видимому, способны регистрировать фронт с высокой точностью (что, к сожалению, еще недостаточно исследовано). Поскольку информация о спектрах содержится в направлениях фронтов световых волн, можно восстановить по ним пространственный спектр и без помощи фокусировки. Чтобы доказать это, в первую очередь необходимы новые эксперименты, опирающиеся на изложенные выше принципы. Надеюсь, что работа [1], пояснения к ней на сайте http://www.kirsoft.com.ru/intell и эта статья побудят кого-то из читателей их поставить.

Устранение парадокса гиперостроты зрения

Парадоксы зрения, объясненные выше, в литературе, как уже говорилось, даже не упоминаются. В отличие от этого парадокс, называемый гиперостротой зрения, известен многим. Правда, объяснений ему до работы [1] не было. Его сущность связана с теоремой Котельникова, которая утверждает: чтобы система различала интервалы, величина которых Т , ее разрешение должно быть не ниже Т/ 2. Обратные величины этих интервалов есть соответствующие частоты, для зрения — пространственные. Если исходить из достоверно измеренных угловых размеров торцов палочек (по отношению их диаметров к фокусному расстоянию хрусталика), равных 65 минут, и теоремы Котельникова, глаз не способен различать объекты, которые меньше половины этой величины. Однако прямые измерения остроты зрения показывают, что при высокой освещенности разрешающая способность глаза составляет 0,7 угловой минуты, а при низкой — 2 минуты и меньше. Видимый размер Луны порядка 30 угловых минут, а любой из нас различает на ее диске горы, «моря» и другие детали.

Это явный парадокс, что и отмечается во всей литературе о зрении с привлечением множества подробностей о размерах палочек, колбочек и наблюдаемых объектов. Парадокс усугубляет передача сигналов зрения в мозг ганглиозными клетками: каждая занимает в сетчатке площадь, намного превышающую площадь торца палочки или колбочки. Этим они, казалось бы, настолько усредняют их сигналы, что сопоставлять разрешение глаза с размерами палочек и колбочек становится бессмысленно.

Нарушение теоремы Котельникова столь же невозможно, как, например, нарушение закона сохранения энергии. Тот факт, что на Луне невооруженным глазом видны детали, эту теорему и не нарушает потому, что при объяснении механизмов зрения она применяется неправильно.

На рис. 5 условно изображены две линейки фоторецепторов. Черные прямоугольники-фоторецепторы обозначают те, которые «засвечены» точкой изображения, белые — не засвеченные. На эти линейки фоторецепторов спроецировано столь же условное изображение в виде ряда одиночных точек (для наглядности они продолжены в линии) и сдвоенных точек (на рисунке справа), расстояние между которыми меньше половины величины торца фоторецептора. Если следовать авторам, применяющим теорему Котельникова для объяснения разрешения глаза, сдвоенные точки должны сливаться, быть невидными по отдельности. Однако из рисунка ясно, что случаю одиночных и сдвоенных «неразреши мых» точек соответствуют разные комбинации возбужденных фоторецепторов (отмечены толстыми стрелками). Именно ширина боковой границы фоторецептора, а не размер его торца играет решающую роль для разрешения элементов изображений!

Как ясно из предыдущего, «видят» палочки и колбочки своей боковой поверхностью. Понятно, что большая величина отношения их длин к диаметрам гарантирует узость границы их торцов. Но именно это необходимо для разрешения точек, размер которых намного меньше диаметра торцов фоторецепторов.

Чтобы связать схему рис. 5 с теоремой Котельникова, остается напомнить общеизвестное о спектрах импульсов, которые в данном случае пространственные. Такой импульс-прямоугольник показан на рис. 6, где отложен сигнал фоторецептора в функции размера вдоль его торца. Для наглядности принято, что и сам торец фоторецептора светочувствителен.

Импульсы можно описать с помощью суммы колебаний возрастающих частот — гармоник основной частоты. Такая процедура в математике называется разложением Фурье. По мере увеличения числа учитываемых гармоник их сумма все точнее приближается к истинной форме импульса, что показано кривыми, помеченными на рис. 6 номерами гармоник. Самому грубому описанию импульса будет соответствовать только основная частота в виде одного «горба» синусоиды — половины длины ее волны (цифра 1 на рис 6). Если бы фоторецепторы действительно имели закон чувствительности к свету, соответствующий кривой 1, теорема Котельникова запретила бы глазу разрешить отдельные точки изображения, разделенные интервалом, меньшим длины «горба». По мере роста числа учитываемых высших гармоник-частот реальный прямоугольник-импульс описывается все точнее. Соответственно теорему Котельникова надо применять к периоду той частоты, которая наиболее велика в разложении Фурье импульса с точностью, соответствующей ширине r b его границы. Сопоставив рис. 4 и рис. 6, можно увидеть, что эта пространственная частота для реальной палочки в сетчатке как минимум в десять раз выше основной гармоники. Колбочки, как следует из их формы на рис. 4, не могут иметь столь же резкую границу, как палочки. Потому-то цветовое зрения имеет меньшее разрешение, хотя торец-острие колбочки намного меньше плоского торца палочки.

В основе радиотехники лежит понятие «полоса пропускаемых частот». Оно выражает принцип, что, согласно теореме Котельникова, в ней должен участвовать период Т , отвечающий не синусоиде 1 в разложении Фурье импульсов, а именно старшей ее гармонике. Для зрения это же справедливо при описании реального разрешения фоторецепторов глаза с помощью пространственных частот. Потому-то в полном соответствии с законами физики и математики глаз различает точки, размер которых на сетчатке в десятки раз меньше, чем диаметр торцов фоторецепторов! Интересно, что в ряде работ о необъяснимой гиперостроте зрения применяется сложный математический аппарат, с недоумением упоминается теорема Котельникова, приводится множество подробностей о разных типах и размерах фоторецепторов в сетчатке, но безуспешно. Удивительно, но до работы [1] никто не понял и не применил к разрешающей силе зрения сказанное о разложении в ряд Фурье пространственных частот. Надеемся, что теперь феномен гиперостроты зрения навсегда потеряет статус парадокса.

Из-за неизбежных ограничений объема статьи не удалось рассказать о том, как и почему огромные по отношению к палочкам и колбочкам биполярные и ганглиозные клетки в сетчатке не влияют на разрешающую способность зрения. О роли процессов торможения и возбуждения в нервных системах, справедливых и для зрения, можно прочитать в [1], глава VII, § 9.

В целом создается необходимость и основа для пересмотра многих известных из литературы фактов и подробностей об устройстве глаза и его работе. В частности, новые эксперименты несомненно покажут, что светочувствительность торца палочек мала или вообще отсутствует. Но это не нарушает справедливости рассуждений, приведенных в статье.

В математике метаязык необходим не столько для популярных объяснений, сколько для разъяснений по существу. Иначе математическое описание приводит к тупикам, которые надо устранять именно на метаязыке, как это сделано по отношению к парадоксам зрения в этой статье.

1. Хазен А. М. Разум природы и разум человека . — М.: НТЦ «Университетский», 2000.

3. Хазен А. М. Первые принципы работы мозга, гарантирующие познаваемость природы. — М., 2001.

4. Хазен А. М. О возможном и невозможном в науке. — М.: Наука, 1988.

5. Хазен А. М. Интерференция, лазеры и сверхбыстродействующие ЭВМ. — М.: Знание, 1972.

источник