Меню Рубрики

Закон преломления и отражения света с волновой точки зрения

Корпускулярная теория очень просто объясняла явления геометрической оптики, описываемые в терминах распространения световых лучей. С точки зрения волновой теории, лучи — это нормали к фронту волны. Принцип Гюйгенса также позволяет объяснить законы геометрической оптики на основе волновых представлений о природе света.

Закон отражения

Когда световые волны достигают границы раздела двух сред, направление их распространения изменяется. Если они остаются в той же среде, то происходит отражение света.

Отражение света — это изменение направления световой волны при падении на границу раздела двух сред, в результате чего волна продолжает распространяться в первой среде.

Закон отражения света хорошо известен:

Падающий луч, перпендикуляр к границе раздела двух сред в точке падения и отраженный луч лежат в одной плоскости, причем угол падения равен углу отражения.

Направления распространения падающей и отраженной волн показаны на рис. 3.2.

Рис. 3.2. Отражение света от плоской поверхности

Закон отражения может быть выведен из принципа Гюйгенса. Действительно, допустим, что плоская волна, распространяющаяся в изотропной среде, падает на границу раздела двух сред АС (рис. 3.3).

Рис. 3.3. Применение принципа Гюйгенса к выводу закона отражения

Достаточно рассмотреть два параллельных луча I и в падающем пучке. Углом падения называют угол между нормалью п к поверхности раздела и падающим лучом I. Плоский фронт AD падающей волны сначала достигнет границы раздела двух сред в точке А, которая станет источником вторичных волн. Согласно принципу Гюйгенса, из нее, как из центра, будет распространяться сферическая волна. Через время

,

то есть с запаздыванием во времени на , луч из падающего пучка придет в точку С, которая в этот момент времени также станет источником вторичной волны. Но, к этому моменту вторичная сферическая волна, распространяющаяся из точки А, уже будет иметь радиус (как и должно быть: ). Мы знаем теперь положение двух точек фронта отраженной волны — С и В. Чтобы не загромождать рисунок, мы не показываем вторичных волн, испущенных точками между А и С, но линия CD будет касательной (огибающей) ко всем из них. Стало быть, действительно является фронтом отраженной волны. Направление ее распространения (лучи II и ) ортогонально фронту CD. Из равенства треугольников ABC и ADC вытекает равенство углов

что, в свою очередь, приводит к закону отражения

На рис. 3.4 представлена интерактивная модель отражения света.

Рис. 3.4. Изучение закона отражения света

Закон преломления

Если световые волны достигают границы раздела двух сред и проникают в другую среду, то направление их распространения также изменяется — происходит преломление света.

Преломление света — это изменение направления распространения световой волны при переходе из одной прозрачной среды в другую.

Направление распространения падающей и преломленной волны показано на рис. 3.5.

Рис. 3.5. Преломление света на плоской границе раздела двух прозрачных сред

Закон преломления гласит:

Падающий луч, перпендикуляр к границе раздела сред в точке падения и преломленный луч лежат в одной плоскости, причем отношение синуса угла падения к синусу угла преломления постоянно для данной пары сред и равно показателю преломления второй среды относительно первой

Здесь показатель преломления среды, в которой распространяется преломленная волна, показатель преломления среды, в которой распространяется падающая волна.

Закон отражения также вытекает из принципа Гюйгенса. Рассмотрим (рис. 3.6) плоскую волну (фронт АВ), которая распространяется в среде с показателем преломления , вдоль направления I со скоростью

Эта волна падает на границу раздела со средой, в которой показатель преломления равен , а скорость распространения

Рис. 3.6. К выводу закона преломления света с помощью принципа Гюйгенса

Время, затрачиваемое падающей волной для прохождения пути ВС, равно

За это же время фронт вторичной волны, возбуждаемой в точке А во второй среде, достигнет точек полусферы с радиусом

В соответствии с принципом Гюйгенса положение фронта преломленной волны в этот момент времени задается плоскостью DC, а направление ее распространения — лучом III, перпендикулярным к DC. Из треугольников и следует

Таким образом, закон преломления света записывается так:

На рис. 3.7 представлена интерактивная модель преломления света на границе раздела двух сред.

Рис. 3.7. Изучение закона преломления

Для еще одной иллюстрации применения принципа Гюйгенса рассмотрим пример.

Пример. На плоскую границу раздела двух сред падает нормально луч света. Показатель преломления среды непрерывно увеличивается от ее левого края к правому (рис. 3.8). Определим, как будет идти луч света в этой неоднородной среде.

Рис. 3.8. Искривление луча света в неоднородной среде

Пусть фронт волны АА подошел к границе раздела сред. Точки раздела сред можно рассматривать как центры вторичных волн. Через время испущенные вторичные сферические волны достигают точек на расстоянии от фронта АА. Поскольку показатель преломления среды растет слева направо, эти расстояния убывают слева направо. Огибающая к вторичным волнам — новый фронт ВВ — повернется. Если теперь взять точки фронта ВВ за источники вторичных волн, то за время они породят волны, образующие фронт СС. Он еще более повернут. Его точки порождают фронт DD и т. д. Проводя нормаль к волновым фронтам в разные моменты времени, получаем путь светового луча в среде с переменным показателем преломления (зеленая линия). Видно, что луч искривляется в сторону увеличения показателя преломления. Аналогия: если притормозить левые колеса автомобиля, его повернет налево. Для света степень «торможения» растет с ростом показателя преломления среды: .

Эта задача имеет отношение к явлению, наблюдающемуся на море. Когда ветер дует с берега, иногда возникает так называемая «зона молчания»: звук колокола с судна не достигает берега. Обычно говорят, что звук относится ветром. Но даже при сильном урагане скорость ветра примерно в 10 раз меньше скорости звука, так что «отнести» звук ветер никак не может. Объяснение заключается в том, что скорость встречного ветра у поверхности моря вследствие трения меньше, чем на высоте. Поэтому скорость звука у поверхности больше, и линия распространения звука загибается кверху, не попадая на берег.

http://www.nvtc.ee/e-oppe/Sidorova/objects/index.html – Законы преломления, отражения света. Зеркала. Теория и примеры задач. В «Итоговых заданиях» — кроссворд.

http://publ.lib.ru/ARCHIVES/B/. – Тарасов Л.В., Тарасова А.Н., «Беседы о преломлении света».

Принцип Ферма.

Итак, волновая оптика способна объяснить явления отражения и преломления света столь же успешно, как и геометрическая оптика. В основу последней, трактующей явления на основе законов распространения лучей, положен принцип Ферма:

Свет распространяется по такому пути, для прохождения которого требуется минимальное время.

Для прохождения участка пути свету требуется время

где v=с/п — скорость света в среде. Таким образом, время t, затрачиваемое светом на путь от точки 1 до точки 2, равно

Введем величину с размерностью длины, которая называется оптической длиной пути:

Пропорциональность t и L позволяет сформулировать принцип Ферма следующим образом:

Свет распространяется по такому пути, оптическая длина которого минимальна.

Рассмотрим путь света из точки S в точку С после отражения от плоскости АВ (рис. 3.9).

Рис. 3.9. Применение принципа Ферма к отражению света

Непосредственное попадание света из S в С невозможно из-за экрана. Нам надо найти точку О, отразившись в которой луч попадет в точку С. Среда, в которой проходит луч, однородна. Поэтому минимальность оптической длины пути сводится к минимальности его геометрической длины. Рассмотрим зеркальное изображение S’ точки S. Геометрические длины путей SOC и S’OC равны. Поэтому минимальность длины SOC эквивалентна минимальности длины S’OC. А минимальная геометрическая длина пути из S’ в С будет соответствовать прямой, соединяющей точки S’ и С. Пересечение этой прямой с плоскостью раздела сред дает положение точки О. Отсюда следует равенство углов:

то есть закон отражения света.

Рассмотрим теперь явление преломления света (рис. 3.10).

Рис. 3.10. Применение принципа Ферма к преломлению света

Определим положение точки О, в которой должен преломиться луч, распространяясь от S к С, чтобы оптическая длина пути L была минимальна. Выражение для L имеет вид

Найдем величину х, соответствующую экстремуму оптической длины пути:

источник

Оптика – раздел физики, изучающий световые явления.

Если часть света возвращается в первоначальную среду, то это явление называют отражением света.

Отражение бывает зеркальным и диффузным.

Поверхность называется зеркальной, если размеры её неровностей меньше длины световой волны.

Зеркальное отражение Диффузное отражение

Падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения β равен углу падения α.

Если вторая среда прозрачная, то часть света проходит в неё меняя при этом свое направление. Это явление называют преломлением света.

Падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления γ есть величина, постоянная для двух данных сред:

Постоянную величину n называют относительным показателем преломления второй среды относительно первой.

Показатели преломления n1,n2 среды относительно вакуума называют абсолютными показателями преломления.

Физический смысл относительного показателя преломления n – это отношение скорости распространения волн в первой среде 1 к скорости их распространения во второй среде 2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

3.Задача на определение массы, энергии или импульса фотона.

Определить массу и энергию фотонов, соответствующих свету с длиной волны 200 нм

E=hν = =

m= = кг

p=mc= *3* =0,03315*10 -27 кг*м/с

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8782 — | 7150 — или читать все.

195.133.146.119 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

  • геометрическая или лучевая оптика , в основе которой лежит представление о световых лучах;
  • волновая оптика , изучающая явления, в которых проявляются волновые свойства света;
  • квантовая оптика , изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.
Читайте также:  Вещества с точки зрения зонной теории

В настоящей главе рассматриваются две первые части оптики. Корпускулярные свойства света будут рассматриваться в гл. V.

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при . Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости ( плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.

Постоянную величину называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол αпр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения ; значение .

Если второй средой является воздух (), то формулу удобно переписать в виде
где – абсолютный показатель преломления первой среды.

Для границы раздела стекло–воздух () критический угол равен , для границы вода–воздух () .

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

источник

ГЛАВА 4. ОПТИКА.

Оптика – раздел физики, в котором изучают свойства света, его физическую природу, законы распространения и взаимодействия с веществом.

С точки зрения современной физики свет имеет двойственную природу,обладая одновременно и корпускулярными (частица), и волновымисвойствами,являясь электромагнитной волной. Это носит названиекорпускулярно-волнового дуализма света.

ГЕОМЕТРИЧЕСКАЯ ОПТИКА

В данном параграфе мы остановимся на явлениях описываемых в рамках, так называемой, ГЕОМЕТРИЧЕСКОЙ ОПТИКИчасть оптики, которая изучает законы распространения света на основе представлений о нем как о совокупности световых лучей.

Луч — линия, вдоль которой переносится энергия световыми волнами.

В геометрической оптике волновая природа света не учитывается, т.е. длину световой волны в ряде случаев можно считать исчезающе малой.

Законы геометрической оптики:

1. ЗАКОН ПРЯМОЛИНЕЙНОГО РАСПРОСТРАНЕНИЯ света: в оптически однородной среде свет распространяется по прямым линиям. В частности, прямолинейность распространения света приводит к тому, что за непрозрачными телами, освещенными одним источником, образуются тени.

ЗАКОН НЕЗАВИСИМОСТИ СВЕТОВЫХ ЛУЧЕЙ: распространение световых лучей в среде происходит независимо друг от друга, т.е. при пересечении двух или большего числа лучей, каждый из них не взаимодействует с другими, а распространяется так, как если бы другие световые лучи отсутствовали.

Распространение света в вакууме происходит со скоростью с»299800 . Скорость света в веществе (u) меньше, чем в вакууме, и равна

, (4.1)

где n – абсолютный показатель преломления вещества, определяемый соотношением . Для подавляющего большинства сред, которые рассматриваются в оптике, их магнитная проницаемость близка к единице, m»1. Поэтому в достаточно хорошем приближении полагают, что показатель преломления определяется диэлектрической проницаемостью среды

. (4.2)

ЗАКОНЫ ОТРАЖЕНИЯ И ПРЕЛОМЛЕНИЯ СВЕТА.

При падении света на границу раздела двух сред происходит отражение и преломление световых лучей (см. рис 5.1.). Введем следующие обозначения:

a – угол падения (угол между падающим лучом и перпендикуляром к границе раздела сред, проведенным через точку падения),

b – угол отражения (угол между отраженным лучом и перпендикуляром к границе раздела сред, проведенным через точку падения),

g – угол преломления (угол между преломленным лучом и перпендикуляром к границе раздела сред, проведенным через точку падения).

1. Если свет не попадает во вторую среду, в геометрической оптике выделяют ДВА ЗАКОНА ОТРАЖЕНИЯ:

· падающий луч, отраженный луч и перпендикуляр, проведенный к поверхности раздела сред через точку падения, лежат в одной плоскости;

· угол отражения равен углу падения, b=a.

Для законов отражения выполняется ПРИНЦИП ОБРАТИМОСТИ СВЕТОВЫХ ЛУЧЕЙ: луч света, распространяющийся по пути отраженного луча В, отразившись в точке О от поверхности раздела сред, распространяется дальше по пути падающего луча А.

2. Теперь рассмотрим, что происходит со световым лучом, который проходит во вторую среду. В ней луч преломляется, то есть изменяется угол между перпендикуляром, проведенным к границе раздела двух сред через точку падения, и лучом, распространяющимся во второй среде. Следовательно, преломляясь, луч меняет свое направление. В этом случае справедлив ЗАКОН ПРЕЛОМЛЕНИЯ, установленный Снеллиусом в 1620 г. Он гласит:

Преломленный луч лежит в плоскости, проведенной через падающий луч и перпендикуляр к границе раздела двух сред в точке падения, и отношение синуса угла падения a к синусу угла преломления g определяется свойствами этих двух сред, а именно

, (4.3)

где n1 и n2 – показатели преломления I-ой и II-ой сред, соответственно.

Среда с большим показателем преломленияназывается оптически более плотной. Скорость распространения лучей в ней маленькая.

1. Если n2 > n1, то как видно из соотношения (5.3),( ), то угол падения > угла преломления, (Ða > Ðg)

2. Если n2 aпр свет полностью отражается от границы раздела двух сред, и это явление носит название полного внутреннего отражения. Угол aпр называется предельным углом ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ.

Его значение определяется из закона преломления (5.3) в соответствии со следующим соотношением:

, (4.4)

источник

Для начала немного пофантазируем. Представьте жаркий летний день до нашей эры, первобытный человек при помощи остроги охотится на рыбу. Замечает ее положение, целится и наносит удар почему-то вовсе не туда, где была видна рыба. Промахнулся? Нет, в руках у рыбака добыча! Все дело в том, что наш предок интуитивно разбирался в теме, которую мы будем изучать сейчас. В повседневной жизни мы видим, что ложка, опущенная в стакан с водой, кажется кривой, когда мы смотрим через стеклянную банку – предметы кажутся искривленными. Все эти вопросы мы рассмотрим на уроке, тема которого: «Преломление света. Закон преломления света. Полное внутренне отражение».

На предыдущих уроках мы говорили о судьбе луча в двух случаях: что будет, если луч света распространяется в прозрачно однородной среде? Правильный ответ – он будет распространяться прямолинейно. А что будет, когда луч света падает на границу раздела двух сред? На прошлом уроке мы говорили об отраженном луче, сегодня мы рассмотрим ту часть светового пучка, которая поглощается средой.

Какова же будет судьба луча, который проник из первой оптически прозрачной среды, во вторую оптически прозрачную среду?

Если луч падает на границу раздела двух прозрачных сред, то часть световой энергии возвращается в первую среду, создавая отраженный пучок, а другая часть проходит внутрь во вторую среду и при этом, как правило, изменяет свое направление.

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света (рис. 1).

Рис. 2. Углы падения, преломления и отражения

На рисунке 2 мы видим падающий луч, угол падания обозначим α. Луч, который будет задавать направление преломленного пучка света, будем называть преломленным лучом. Угол между перпендикуляром к границе раздела сред, восстановленным из точки падения, и преломленным лучом называют углом преломления, на рисунке это угол γ. Для полноты картины дадим еще изображение отображенного луча и, соответственно, угла отражения β. Какова же связь между углом падения и углом преломления, можно ли предсказать, зная угол падения и то, с какой среды в какую перешел луч, каким будет угол преломления? Оказывается можно!

Получим закон, количественно описывающий зависимость между углом падения и углом преломления. Воспользуемся принципом Гюйгенса, который регламентирует распространение волны в среде. Закон состоит из двух частей.

Читайте также:  Вижу первую строчку таблицы для зрения

Падающий луч, преломленный луч и перпендикуляр, восстановленный в точку падения, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равна отношению скоростей света в этих средах.

Этот закон называют законом Снеллиуса, в честь голландского ученого, впервые его сформулировавшего. Причина преломления – в разнице скоростей света в разных средах. Убедиться в справедливости закона преломления можно, экспериментально направляя луч света под разными углами на границу раздела двух сред и измеряя углы падения и преломления. Если менять эти углы, измерять синусы и находить отношения синусов этих углов, мы убедимся в том, что закон преломления действительно справедлив.

Доказательства закона преломления при помощи принципа Гюйгенса – еще одно подтверждение волновой природы света.

Относительный показатель преломления n21 показывает, во сколько раз скорость света V1 в первой среде отличается от скорости света V2 во второй среде.

n21 =

Относительный показатель преломления – это наглядная демонстрация того факта, что причина изменения направления света при переходе из одной среды в другую – это разная скорость света в двух средах. Часто для характеристики оптических свойств среды пользуются понятием «оптическая плотность среды» (рис. 3).

Рис. 3. Оптическая плотность среды (α > γ)

Если луч переходит из среды с большей скоростью света в среду с меньшей скоростью света, то, как видно из рисунка 3 и закона преломления света, он будет прижиматься к перпендикуляру, то есть угол преломления меньше, чем угол падения. В этом случае говорят, что луч перешел из менее плотной оптической среды в более оптически плотную среду. Пример: из воздуха в воду; из воды в стекло.

Возможна и обратная ситуация: скорость света в первой среде меньше скорости света во второй среде (рис. 4).

Рис. 4. Оптическая плотность среды (α

Тогда угол преломления будет больше угла падения, а про такой переход скажут, что он совершен из оптически более плотной в менее оптически плотную среду (из стекла в воду).

Оптическая плотность двух сред может отличаться достаточно существенно, таким образом, становится возможна ситуация, приведенная на фотографии (рис. 5):

Рис. 5. Отличие оптической плотности сред

Обратите внимание, насколько смещена голова относительно туловища, находящегося в жидкости, в среде с большей оптической плотностью.

Однако относительный показатель преломления – не всегда удобная для работы характеристика, потому что он зависит от скоростей света в первой и во второй средах, а вот таких сочетаний и комбинаций двух сред может быть очень много (вода – воздух, стекло – алмаз, глицерин – спирт, стекло – вода и так далее). Таблицы были бы очень громоздкими, работать было бы неудобно, и тогда ввели одну абсолютную среду, по сравнению с которой сравнивают скорость света в других средах. В качестве абсолюта был выбран вакуум и скорости света сравниваются со скоростью света в вакууме.

Абсолютный показатель преломления среды n – это величина, которая характеризует оптическую плотность среды и равна отношению скорости света С в вакууме к скорости света в данной среде.

Абсолютный показатель преломления удобнее для работы, ведь мы скорость света в вакууме знаем всегда, она равна 3·10 8 м/с и является универсальной физической постоянной.

Абсолютный показатель преломления зависит от внешних параметров: температуры, плотности, а также от длины волны света, поэтому в таблицах обычно указывают средний показатель преломления для данного диапазона длин волн. Если сравнить показатели преломления воздуха, воды и стекла (Рис. 6), то видим, что у воздуха показатель преломления близок к единице, поэтому мы и будем его брать при решении задач за единицу.

Рис. 6. Таблица абсолютных показателей преломления для разных сред

Несложно получить связь абсолютного и относительного показателя преломления сред.

Относительный показатель преломления , то есть для луча, переходящего из среды один в среду два, равен отношению абсолютного показателя преломления во второй среде к абсолютному показателю преломления в первой среде.

Например:

Рис. 7. Полное внутреннее отражение

Луч SО2, чей угол падения больше, также разделяется на два луча: преломленный и отраженный, но энергия исходного луча распределяется между ними уже по-другому: преломленный луч О2А2 будет тусклее, чем луч О1А1, то есть получит меньшую долю энергии, а отраженный луч О2В2, соответственно, будет ярче, чем луч О1В1, то есть получит большую долю энергии. По мере увеличения угла падения прослеживается все та же закономерность – все большая доля энергии падающего луча достается отраженному лучу и все меньшая – преломленному лучу. Преломленный луч становится все тусклее и в какой-то момент исчезает совсем, это исчезновение происходит при достижении угла падения, которому отвечает угол преломления 90 0 . В данной ситуации преломленный луч ОА должен был бы пойти параллельно поверхности воды, но идти уже нечему – вся энергия падающего луча SО целиком досталась отраженному лучу ОВ. Естественно, что при дальнейшем увеличении угла падения преломленный луч будет отсутствовать. Описанное явление и есть полное внутреннее отражение, то есть более плотная оптическая среда при рассмотренных углах не выпускает из себя лучи, все они отражаются внутрь нее. Угол, при котором наступает это явление, называется предельным углом полного внутреннего отражения.

Величину предельного угла легко найти из закона преломления:

≈ 49 0

Самым интересным и востребованным применением явления полного внутреннего отражения являются так называемые волноводы, или волоконная оптика. Это как раз тот способ подачи сигналов, который используется современными телекоммуникационными компаниями в сетях Интернет.

Мы получили закон преломления света, ввели новое понятие – относительный и абсолютный показатели преломления, а также разобрались с явлением полного внутреннего отражения и его применением, таким как волоконная оптика. Закрепить знания можно, разобрав соответствующие тесты и тренажеры в разделе урока.

Получим доказательство закона преломления света при помощи принципа Гюйгенса. Важно понимать, что причина преломления – это разность скоростей света в двух различных средах. Обозначим скорость света в первой среде V1, а во второй среде – V2 (рис. 8).

Рис. 8. Доказательство закона преломления света

Пусть на плоскую границу раздела двух сред, например из воздуха в воду, падает плоская световая волна. Волновая поверхность АС перпендикулярна лучам ∆t =

Поэтому в момент времени, когда вторичная волна в точке В только начнет возбуждаться, волна от точки А уже имеет вид полусферы радиусом АD, который равен скорости света во второй среде на ∆t: АD = ·∆t, то есть принцип Гюйгенса в наглядном действии. Волновую поверхность преломленной волны можно получить, проведя поверхность, касательную ко всем вторичным волнам во второй среде, центры которых лежат на границе раздела сред, в данном случае это плоскость ВD, она является огибающей вторичных волн. Угол падения α луча равен углу САВ в треугольнике АВС, стороны одного из этих углов перпендикулярны сторонам другого. Следовательно, СВ будет равно скорости света в первой среде на ∆t

СВ = АD =

Луч падает в точку F, это значит, что мы видим четко предмет, а черным пунктиром изображен ход луча, если бы не было воды, то есть до точки D. Из треугольника NFК тангенс угла β, тангенс угла преломления, – это отношение противолежащего катета к прилежащему или, исходя из рисунка, h минус b, деленное на h.

tg β = Выражаем из полученной зависимости высоту h: h = Воспользуемся законом преломления, согласно которому n = После преобразований получим: .

В итоге мы получаем, что необходимо налить воду высотой приблизительно 27 см, в этом случае мы будем видеть предмет F, находящийся на расстоянии 10 см от стенки.

Наиболее интенсивное явление полного внутреннего отражения используется в волоконных оптических системах.

Если в торец сплошной стеклянной трубки направить пучок света, то после многократного полного внутреннего отражения пучок выйдет с противоположной стороны трубки. Получается, что стеклянная трубка – проводник световой волны или волновод. Это произойдет независимо от того, прямая это трубка или изогнутая (Рис. 10). Первые световоды, это второе название волноводов, использовались для подсвечивания труднодоступных мест (при проведении медицинских исследований, когда свет подается на один конец световода, а второй конец освещает нужное место). Основное применение – это медицина, дефектоскопия моторов, однако наибольшее применение такие волноводы получили в системах передачи информации. Несущая частота при передаче сигнала световой волной в миллион раз превышает частоту радиосигнала, это значит, что количество информации, которое мы можем передать при помощи световой волны, в миллионы раз больше количества информации, передающейся радиоволнами. Это прекрасная возможность передачи огромной информации простым и недорогим способом. Как правило, информация по волоконному кабелю передается при помощи лазерного излучения. Волоконная оптика незаменима для быстрой и качественной передачи компьютерного сигнала, содержащего большой объем передаваемой информации. А в основе всего этого лежит такое простое и обычное явление, как преломление света.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика – 9, Москва, Просвещение, 1990.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Дать определение преломления света.
  2. Назовите причину преломления света.
  3. Назовите самые востребованные применения полного внутреннего отражения.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

источник

Волновая природа света и принцип Гюйгенса.


    Определения:
  • Волновой фронт — поверхность, соединяющая все точки волны, находящиеся в одной фазе (т.е. все точки волны, которые в одно и то же время находятся в одинаковом состоянии колебаний);
  • Луч — линия, в каждой точке перпендикулярная волновому фронту и указывающая на направление распространения волны;
  • Плоская волна — такая волна, волновой фронт которой представляет собой плоскость, перемещающуюся в пространстве со скоростью волны;
  • У сферической волны волновой фронт представляет собой сферу, радиус которой R = vt , где v — скорость волны.

Принцип Гюйгенса. Каждая точка волнового фронта может рассматриваться как источник вторичных сферических волн, распространяющихся со скоростью света в данной среде; огибающая поверхность всех вторичных сферических волн (т.е. поверхность, касательная к фронтам всех вторичных волн) в любой момент времени представляет собой новое положение волнового фронта исходной волны .

Читайте также:  С точки зрения аристотеля политика была

Исходя из этого принципа, легко доказать, что световые лучи в однородной среде распространяются прямолинейно.

Отражение света на основе волновой теории. Пусть плоская волна падает под некоторым углом a на отражающую поверхность. По соглашению угол падения (как и углы отражения и преломления) отсчитывается от нормали к поверхности в точке падения.

1. Падающий луч, отраженный луч и нормаль к поверхности в точке падения лежат в одной плоскости;

2. Угол падения a равен углу отражения g .

Скорость света в вакууме и в среде. Скорость света в среде меньше скорости света в вакууме. Можно показать, что в вакууме

где e 0 и m 0 — диэлектрическая и магнитная постоянные. Если же свет распространяется в однородной среде с диэлектрической проницаемостью e и магнитной проницаемостью m , то скорость света в такой среде

где n > 1 — абсолютный показатель преломления среды . В общем случае скорость света зависит от свойств среды, от ее температуры и от длины волны света. Обычно чем больше длина волны света, тем быстрее он распространяется в данной среде, т.е. скорость распространения красного света больше, чем фиолетового.

Относительным показателем преломления одной среды 1 относительно другой среды 2 называется отношение скоростей распространения света в двух средах:

Среда с большим показателем преломления называется оптически более плотной средой , с меньшим показателем преломления — оптически менее плотной средой .

Преломление света на основе волновой теории . Закон преломления света при переходе из одной среды в другую с иным показателем преломления был открыт Снеллиусом в 1620 г. и впервые упомянут в трудах Р. Декарта. Этот закон можно вывести с помощью принципа Гюйгенса.

Пусть плоская световая волна падает под углом a на границу раздела двух сред с разной скоростью распространения света в них. Тогда для углов падающего и преломлённого лучей верна формула:

Полное внутреннее отражение. Если свет проходит из оптически более плотной среды в оптически менее плотную (например, из стеклянного волокна в воздух), то угол преломления становится больше угла падения. Так как угол преломления не может быть больше p /2 , чему отвечает угол падения

(предельный угол полного отражения),

то все лучи света, падающие на поверхность раздела сред под углами, большими a 0, отражаются назад. Это явление называется полным внутренним отражением .

Дисперсия света. Показатель преломления любой среды определяется свойствами этой среды и зависит от частоты (или длины волны) света, т.е. n = n( w ). Явление зависимости показателя преломления среды от частоты проходящего света называется дисперсией .

источник

Познакомить учащихся с особенностями распространения света на границе раздела двух сред, дать им сведения о законах, которым подчиняется это явление, дать объяснение этого явления с точки зрения волновой теории света.

1 Организационный момент 2
2 Проверка знаний 10 Работа на компьютере с тестом. Тест № 1
3 Объяснение нового материала по теме «Отражение света» 15 Лекция
4 Закрепление изученного материала 15 Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»
5 Подведение итогов 2 Фронтальная беседа
6 Объяснение домашнего задания 1

Домашнее задание: § 60, задача № 1023 (Р. Дрофа, М., 2001)

Волновая теория, в отличие от корпускулярной, рассматривает свет как волну, подобно механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром испускания вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления.

Демонстрация. С помощью волновой ванны продемонстрировать образование сферической волны при прохождении плоской волны через отверстие.

Закон отражения. С помощью принципа Гюйгенса можно вывести закон, которому подчиняются волны при отражении от границы раздела сред.

Рассмотрим отражение плоской волны. Волна называется плоской , если поверхности равной фазы ( волновые поверхности ) представляют собой плоскости. На рисунке: – отражающая поверхность, прямые и – два луча падающей плоской волны (они параллельны друг другу). Плоскость – волновая поверхность этой волны.

Угол между падающим лучом и перпендикуляром к отражающей поверхности в точке падения называют углом падения.

Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред. Различные участки волновой поверхности достигают отражающей границы неодновременно. Возбуждение колебаний в точке начнется раньше, чем в точке , на время ( – скорость волны).

В момент, когда волна достигнет точки и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке уже будет представлять собой полусферу радиусом . Радиусы вторичных волн от источников, расположенных между точками и , меняются так, как показано на рисунке. Огибающей вторичных волн является плоскость , касательная к сферическим поверхностям. Она представляет собой волновую поверхность отраженной волны. Отраженные лучи и перпендикулярны волновой поверхности . Угол между перпендикуляром к отражающей поверхности и отраженным лучом называют углом отражения .

Так как и треугольники и – прямоугольные, то . Но и как углы с перпендикулярными сторонами. Следовательно, угол отражения равен углу падения : .

Кроме того, как вытекает из построения Гюйгенса, падающий луч, луч отраженный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости . Эти два утверждения представляют собой закон отражения света .

Если обратить направление распространения световых лучей, то отраженный луч станет падающим, а падающий – отраженным. Обратимость хода световых лучей – их важное свойство.

Ф. И. ___________________________________________________________

В каком случае происходит явление отражения света?

Ответ: при падении луча света на границу раздела двух оптически различных сред .

В каком случае отраженный луч совпадает с падающим лучом?

Ответ: при падении луча перпендикулярно границе раздела .

Чему при этом равен угол падения?

Чему равен угол отражения?

Направьте падающий луч на границу раздела двух сред так, чтобы угол падения был равен . Чему равен угол отражения?

Увеличьте угол падения на . Чему равен угол падения?

Чему равен угол отражения?

Ответ: угол падения равен углу отражения.

Расположите осветитель на отметке . Чему равен угол между падающим и отраженным лучами?

Уменьшите угол падения на 30°. Что произошло с углом между падающим и отраженным лучами?

Обсудить ответы на вопросы 7, 8, 9. Обратить внимание на то, что луч падающий, отраженный и перпендикуляр, восставленный в точку падения, лежат в одной плоскости. Повторить закон отражения света.

В полном варианте: показать обратимость световых лучей, решить задачи на определение углов падения, отражения и расположения зеркала.

источник

В рамках геометрической оптики свет представляется как поток мельчайших невзаимодействующих друг с другом частиц — фотонов. Совокупность таких частиц образует световой луч (пучок) — линию, вдоль которой распространяется энергия световых электромагнитных волн (или фактическая траектория движения фотонов).

Скорость распространения светового пучка зависит от среды, в которой он путешествует. Для характеристики этой зависимости вводят параметр среды — абсолютный показатель преломления среды:

  • где
    • — абсолютный показатель преломления,
    • — скорость света в исследуемой среде,
    • м/с — скорость света в вакууме.

Введённый нами показатель преломления — табличная величина для различного рода оптически прозрачных сред. Для воздуха считаем показатель преломления примерно равным 1 ( ).

Тогда введём понятие оптически однородная оптическая среда – среда, в которой абсолютный показатель преломления одинаков во всех точках среды. Для такой среды распространение светового пучка прямолинейное.

Для световых пучков существует, так называемый, закон независимости световых пучков — в случае пересечения нескольких световых пучков в одной точке дальнейшее распространение пучков также прямолинейно (т.е. световые пучки как бы «не замечают» друг друга). Также необходимо добавить, что в этом случае освещённость экрана, создаваемая несколькими световыми пучками, равна сумме освещённостей, создаваемых каждым пучком в отдельности.

В случае двух сред, находящихся в непосредственном контакте друг с другом («вода-воздух», «воздух-стекло» и т.д.), вводят относительный показатель преломления. Пусть даны две среды:

  • где
    • — относительный показатель преломления,
    • — скорость света в первой среде,
    • — скорость света во второй среде.

Относительный показатель преломления всегда расчётный, он характеризует относительное изменение скорости при прохождении пучка света из одной среды к другой. При , среда 2 называется более оптически плотной, а среда 1 — менее оптически плотной.

Оба показателя преломления безразмерные.

Кроме, собственно, распространения света, в школьной физике изучается взаимодействие света с веществом, хотя и в несколько ограниченном виде. В общем случае, эти вопросы касаются взаимодействия с зеркальной поверхностью (отражение) и взаимодействие с оптически прозрачными средами (преломление).

Итак, пусть дана отражающая поверхность, от некоего источника на неё падает луч (рис. 1).

Законы отражения света:

  1. падающий луч (1), отражённый луч (3) и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча (2), лежат в одной плоскости
  2. угол отражения равен углу падения

Важно: углы падения и отражения отсчитываются от перпендикуляра, восстановленного в точке падения луча.

Теперь рассмотрим границу раздела двух оптически прозрачных сред (рис. 2). На границе раздела происходит преломление света (отклонение хода луча от прямой).

Законы преломления света:

  1. лучи: падающий (1), преломлённый (3) и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча (2), лежат в одной плоскости.
  2. отношение синусов углов падения и преломления есть величина постоянная, равная относительному показателю преломления данных двух сред (закон Снеллиуса).

Пусть даны две среды А и В, разделённые границей раздела (привет, тавтология). Пусть показатели преломления этих сред и соответственно. Тогда угол падения ( ) и угол отражение ( ) связаны соотношением:

Соотношение (2) и является законом Снеллиуса.

Важно: углы падения и преломления отсчитываются от перпендикуляра, восстановленного в точке падения луча.

Вывод: задачи на отражение/преломления, по сути, геометрические, исходя из общих законов делается рисунок, который разрешается из геометрических соотношений (поиск сторон треугольника, средней линии треугольника, ряда тригонометрических соотношений, теорем Пифагора, синусов/косинусов).

источник